Characteristics and Significance of Rare Earth Elements in Lithic Cuttings of Gypsum Salt Section of Geothermal Well in Gaotan Town, Linshui, Sichuan
-
摘要: 膏盐稀土元素研究不仅可以查明成矿物质来源, 而且对于评价钾盐的成矿潜力也具有重要意义。四川盆地华蓥山东翼四川邻水县高滩镇倒碑村地热井嘉陵江组—雷口坡组钻遇多层膏盐夹层, 对其岩屑开展了岩石学、稀土元素和相关微量元素测试分析。研究表明: (1)该区嘉陵江组—雷口坡组膏盐层成分主要为石膏, 含少量钾长石、石英、黏土矿物等陆源碎屑, ΣREE 较低, 为7.18×10–6~77.63×10–6, 均值20.03×10–6, 明显低于泥岩及砂岩稀土总量, 与江西信江盆地晚白垩世膏盐以及安徽北部等地碳酸盐岩REE 总量相近。ΣREE与Al 的主要载体(黏土矿物)呈正相关关系, HREE 与LREE 亦呈明显正相关关系, 稀土元素来自附近泸州古隆起陆源碎屑态黏土矿物以及黏土矿物对水体中稀土的吸附作用, 这两种作用可能是该区膏盐类稀土元素的主要来源。稀土元素含量或可作为膏盐和盐岩盆地与古陆距离的评价指标。膏盐岩屑矿物组成及稀土元素特征反映该区靠近泸州古隆起, 来自古陆的地表淡水的淡化作用, 是该区未能形成规模性钾盐矿床的主要原因; (2)该区膏盐层段岩屑稀土元素为相对平坦的页岩标准化曲线形态, LREE/HREE 介于3.02~3.72 之间, 平均值3.37。(La/Yb)N 介于1.15~1.63 之间, 平均值1.29, 曲线略向右倾斜, 轻稀土弱富集。δEu 介于1.14~6.89 之间, 平均值2.65。δCe 介于0.81~0.87, 平均值0.85, 具明显的Eu 正异常和较弱的Ce 亏损, 表现为缺氧、还原、强酸的环境, 地层中或广泛存在热化学硫酸岩还原作用(TSR); (3)La/Ce 值、Zn-Ni-Co 三角图、logTh-logU 相关图显示膏盐地层为高温环境, 这促进了TSR 作用的发育。高温除与正常地温梯度相关外, 还可能与峨眉山玄武岩喷发后续效应以及雷口坡组底部火山喷发(绿豆岩)有关。这些研究有助于膏盐类稀土元素聚集机理的认识, 对于膏盐沉积、成岩过程中稀土元素的地球化学行为的认识也有积极意义。Abstract: The study of rare earth elements in paste salts can help identify the source of ore-forming materials, and have important significance for evaluating the ore-forming potential of potassium salts. A multi-layer paste salt interlayer was drilled in the Jialingjiang Formation–Leikoupo Formation of a geothermal well in Daobei Village, Gaotan Town, Linshui County, Sichuan, and petrological, rare-earth elements, and related trace elements were tested and analyzed. The study shows: (1) The gypsum salt beds in this area are mainly composed of gypsum and contain a small amount of terrigenous debris, such as potassium feldspar, quartz, and clay minerals. ΣREE is low, ranging from 7.18×10–6–77.63×10–6 with an average of 20.03×10–6, which is significantly lower than the total REE of mudstone and sandstone, and similar to the total REE of gypsum salt in Xinjiang Basin of Jiangxi Province and carbonate rocks in northern Anhui Province. ΣREE is positively correlated with the main carrier of Al (clay minerals), and HREE and LREE are also significantly positively correlated. Ree elements come from terrigenous clastic clay minerals in the nearby Luzhou palaeouplift and the adsorption of clay minerals on REE in water, which may be the main sources of REE elements in paste salts. The content of rare earth elements may be used as an index to evaluate the distance between paste salt and salt basin and ancient land. The mineral composition and rare earth element characteristics of the paste rock debris indicate that this area is close to the Luzhou palaeouplift, and the desalting effect of surface fresh water from the ancient land is the main reason for the failure to form large-scale potassium salt deposits in this area; (2) The rare earth elements of the paste salt formation in this area are relatively flat standardized curve of shale. LREE/HREE ranges from 3.02 to 3.72, with a mean value of 3.72. (La/Yb)N was between 1.15–1.63 with a mean value of 1.29. The curve inclined slightly to the right, and light rare earth were weakly enriched. δEu ranged from 1.14 to 6.89 with a mean of 2.65.δCe ranges from 0.81 to 0.87 with a mean of 0.85. It has an apparent positive Eu anomaly and weak Ce deficit, which is characterized by anoxic, reductive and strong acid environment, and hydrothermal sulfite reduction (TSR)exists in the formation or widely; (3) The La/Ce values, Zn-Ni-Co triangle diagram and LogTh-LogU correlation diagram show that the paste salt formation is a high-temperature environment, which promotes the development of TSR effect. In addition to the normal geothermal gradient, the high temperature may be more importantly related to the follow-up effect of the Emei basalt eruption and the volcanic eruption (mung bean rock) at the bottom of the Lekoupo Formation. These findings help understand the accumulation mechanism of earth elements in paste salt and positively promote the understanding of the geochemical behavior of earth elements in the process of paste salt deposition and diagenesis.
-
Key words:
- Linshui County /
- Gaotan Town /
- geothermal well /
- gypsum salt /
- rare earth element
-
-
《沉积地球化学应用讲座》编写组, 1989a. 沉积作用过程中稀土元素的地球化学(1)[J]. 岩相古地理, (1): 58-66.
《沉积地球化学应用讲座》编写组, 1989b. 沉积作用过程中稀土元素地球化学(2)[J]. 岩相古地理, (2): 44-51.
蔡本俊, 1985. 印支、燕山运动对四川三叠纪(钾)盐盆地的控矿和改造[J]. 中国地质科学院地质力学研究所所刊, (5):57-63.
高长林, 1992. 陕西南岭碳酸盐岩的稀土元素特征及其古海洋学意义[J]. 地球化学, (4): 383-390.
侯东壮, 2011. 黔东地区黑色岩系地球化学特征及沉积环境研究[D]. 长沙: 中南大学: 16
胡云中, 邓坚, 1986. 稀土元素间线性方程关系和偶奇比参数的研讨[J]. 中国地质科学院矿床地质研究所所刊, 2: 137-143.
金强, 2003. 柴达木盆地西部第三系蒸发岩微量元素组成及其地球化学特征[J]. 石油大学学报(自然科学版), 27(2): 1-5, 9.
李定龙, 2000. 皖北奥陶系碳酸盐岩稀土元素地球化学特征及其古岩溶意义[J]. 地学前缘, 7(2): 353-365.
刘建清, 贾保江, 杨平, 等, 2008. 羌塘盆地中央隆起带南侧隆额尼-昂达尔错布曲组古油藏白云岩稀土元素特征及成因意义[J]. 沉积学报, 26(1): 28-38.
商雯君, 张永生, 李空, 等, 2020. 川东北宣汉地区新型杂卤石钾盐矿的地球化学特征及其意义[J]. 矿床地质, 39(2):369-380.
四川省地质局航空区域调查队, 1980. 中华人民共和国区域地质测量报告·广安幅[R]. 成都: 四川省地质局航空区域调查队.
杨守业, 李从先, 1999. REE 示踪沉积物物源研究进展[J]. 地球科学进展, 14(2): 164-167.
袁玉松, 马永生, 胡圣标, 等, 2006. 中国南方现今地热特征[J].地球物理学报, 49(4): 1118-1126.
张茜, 王剑, 余谦, 等, 2017. 康滇古陆西侧龙马溪组黑色页岩地球化学特征及其地质意义[J]. 沉积与特提斯地质, 37(1):97-107.
赵艳军, 刘成林, 龚大兴, 等, 2015. 泸州-开江古隆起对川东三叠纪成盐成钾环境的控制作用[J]. 地质学报, 89(11):1983-1989.
朱光有, 张水昌, 梁英波, 等, 2006. TSR 对深部碳酸盐岩储层的溶蚀改造--四川盆地深部碳酸盐岩优质储层形成的重要方式[J]. 岩石学报, 22(8): 2182-2194.
朱志军, 郭福生, 邱安庆, 2016. 江西信江盆地罗塘凹陷膏盐微量元素地球化学特征[J]. 高校地质学报, 22(4): 598-607.
ALLÈGRE C J, MINSTER J F, 1978. Quantitative models of trace elements behavior in magmatic processes[J]. Earth and Planetary Science Letters, 38(1): 1-25.
AVIATION REGIONAL SURVEY TEAM OF SICHUAN GEOLOGICAL BUREAU, 1980. Regional geological survey report of the People's Republic of China Guangan Sheet[R].Chengdu: Aviation regional survey team of Sichuan Geological Bureau(in Chinese).
BOSTRÖM K, KRAEMER T, GARTNER S, 1973. Provenance and accumulation rates of opaline silica, Al, Fe, Mn, Cu, Ni and Co in Pacific pelagic sediments[J]. Chemical Geology, 11(2):123-148.
CAI Benjun, 1985. The control and modification of Indosinian and Yanshanian Movement over the Triassic (kalium) salt-bearing Basins in Sichuan[J]. Bulletin of the Institute of Geomechanics CAGS, (5): 57-63(in Chinese with English abstract).
CHOI J H, HARIYA Y, 1992. Geochemistry and depositional environment of Mn oxide deposits in Tokora Belt, Northeastern Hokkaido, Japan[J]. Economic Geology, 87(5):1265-1274.
CRONAN D S, 1980.Underwater mineral[M]. London: Academic Press: 362.
GANESHRAM R S, PEDERSEN T F, CALVERT S E, 1995. Large changes in oceanic nutrient inventories from glacial to interglacial periods[J]. Nature, 376(6543): 755-758.
GAO Changlin, 1992. REE geochemical characteristics of carbonate rocks in southern Qinling, Shaanxi Province and their paleo-oceanologic significance[J]. Geochemica, (4):383-390(in Chinese with English abstract).
HASKIN L, GEHL M A, 1962. The rare-earth distribution in sediments[J]. Journal of Geophysical Research, 67(6): 2537-2541.
HOU Dongzhuang, 2011. Research on geochemical characteristics and sedimentary environments of black shales in the eastern Guizhou[D]. Changsha: Central South University: 16(in Chinese with English abstract).
HU Yunzhong, DENG Jian, 1986. A study on the relation of liner equation to the parameter of even-odd number ratio among the rare earth elements[J]. Bulletion of the Institute of Mineral Deposits, Chinese Academy of Geological Science, 2:137-143(in Chinese with English abstract).
JIN Qiang, 2003. Geochemistry characteristics of trace elements in evaporates of the Tertiary in western Qaidam Basin[J].Journal of China University of Petroleum(Edition of Natural Science), 27(2): 1-5, 9(in Chinese with English abstract).
LEE J H, BYRNE R H, 1993. Complexation of trivalent rare earth elements (Ce, Eu, Gd, Tb, Yb) by carbonate ions[J].Geochimmica et Cosmochima Acta, 57(2): 295-302.
LI Ding-long, 2000. REE Geochemical features of carbonate rocks and its palaokarst significance in the Ordovician in northeastern Anhui[J]. Earth Science Frontiers (China University Geosciences, Beijing), 7(2): 353-365(in Chinese with English abstract).
LIU Jianqing, JIA Baojiang, YANG Ping, et al., 2008.Characteristics of the paleo-oil dolomite REE geochemistry of Buqu Formation in southern part of the central uplift zone of Qiangtang Basin and its significance[J]. Acta Sedimentologica Sinica, 26(1): 28-38(in Chinese with English abstract).
PIPER D Z, 1974. Rare earth element in the sedimentary cycle: a summary[J]. Chemi.Geol., 14: 285-304.
SHANG Wenjun, ZHANG Yongsheng, LI Kong, et al., 2020.Geochemical characteristics of a new type of polyhalite potassium ore deposits in Xuanhan area, northeast Sichuan, and their significance[J]. Mineral Deposits, 39(2): 369-380(in Chinese with English abstract).
WILDE P, QUINBY-HUNT M S, ERDTMANN B D, 1996. The whole-rock cerium anomaly: a potential indicator of eustatic sea-level changes in shales of the anoxic facies[J].Sedimentary Geology, 101(1-2): 43-53.
YANG Shouye, LI Congxian, 1999. Research progress in REE tracer for sediment source[J]. Advance in Earth Sciences, 14(2): 164-167(in Chinese with English abstract).
YUAN Yusong, MA Yongsheng, HU Shengbiao, et al., 2006.Present-day geothermal characteristics in South China[J].Chinese Journal of Geophysics, 49(4): 1118-1126(in Chinese with English abstract).
ZHANG Qian, WANG Jian, YU Qian, et al., 2017. Black shales from the Longmaxi Formation in western Xikang-Yunnan ancient land: Geochemistry and geological implications[J].Sedimentary Geology and Tethyan Geology, 37(1): 97-107(in Chinese with English abstract).
ZHAO Yanjun, LIU Chenglin, GONG Daxing, et al., 2015. The Luzhou-Kaijiang paleouplift control on the formation environments of Triassic salt and potassium of deposits in eastern Sichuan[J]. Acta Geologica Sinica, 89(11):1983-1989(in Chinese with English abstract).
ZHU Guangyou, ZHANG Shuichang, LIANG Yingbo, et al., 2006.Dissolution and alteration of the deep carbonate reservoirs by TSR: an important type of deep-buried high-quality carbonate reservoirs in Sichuan basin[J]. Acta Petrologica Sinica, 22(8):2182-2194(in Chinese with English abstract).
ZHU Zhijun, GUO Fusheng, QIU Anqing, 2016. Trace element geochemical characteristics of gypsum and its geologic significance from the Luotang Depression in Xinjiang Basin, Jiangxi[J]. Geological Journal of China Universities, 22(4):598-607(in Chinese with English abstract).
-
计量
- 文章访问数: 25
- PDF下载数: 5
- 施引文献: 0