Study on Porosity and Specific Yield of Qarhan Salt Lake Solid Potassium Mine in Qinghai Province Based on Industrial CT
-
摘要: 钾盐是我国战略性关键矿产资源, 察尔汗盐湖是我国最大钾盐生产基地, 钾盐原料主要来自固体钾矿的固液转化, 而孔隙度、给水度是固体钾矿固液转化评价的关键指标。本研究首次利用工业 CT技术获得察尔汗盐湖固体钾矿准确的孔隙度和给水度, 并结合前人资料, 对其动态变化及原因进行了初步研究。主要结论如下: (1)工业CT 可高效、直观、非破坏性地测量固体钾矿的孔隙度和给水度。(2)察尔汗盐湖固体钾矿孔隙度均值为16.49%, 给水度均值为10.21%。孔隙度由第一层向第三层逐渐减小, 第四层稍有回升但仍呈减小趋势; 给水度的平均值也由第一层向第四层逐渐减小。在特定采区, 孔隙度和给水度的最大值和最小值位于不同孔深处, 主要是岩性的不均一性引起。(3)别勒滩矿区的孔隙度(17.12%)较2007 年的孔隙度(20.64%)减小, 而给水度(10.58%)较2007 年的给水度(9.56%)增大, 表明地层持水度降低, 储藏卤水能力减弱, 这可能与干旱气候及固液转化有关。本研究可为察尔汗固体钾矿资源承载力评价提供科学依据, 更为地质条件类似的盐类矿床评价提供可借鉴的方法和思路。Abstract: Potash is a strategic key mineral resource in China, and the Qarhan Salt Lake is the largest potash production base in the country.Potash raw materials are mainly from the solid-liquid transformation of solid potash ore.Porosity and specific yield are the key indicators for evaluating of the solid-liquid transformation of potash in Qarhan Salt Lake.In this study, accurate porosity and specific yield values of Qarhan Salt Lake solid potassium deposit were obtained for the first time by using by industrial CT technology, and the dynamic characteristics and causes of the results were preliminarily studied.The main conclusions of the study are as follows: (1) Industrial CT can efficiently, intuitively, and nondestructively measure the porosity and specific yield of solid potassium ore.(2) The average porosity of the Qarhan Salt Lake solid potassium deposit is 16.49%, and the average specific yield is 10.21%.The porosity decreases gradually from the first layer to the third layer.It rises slightly in the fourth layer but still shows a decreasing trend.The average value of specific yield also decreases gradually from the first layer to the fourth layer.In a specific mining area, the maximum and minimum values of porosity and specific yield are located at different hole depths, which are mainly caused by the heterogeneity of lithology.(3) The porosity (17.12%) in the Bieletan area is lower than it was in 2007 (20.64%), whereas the specific yield (10.58%) is higher than it was in 2007 (9.56%), indicating that the formation specific holding capacity was reduced and the brine storage capacity weakened, which may be related to the arid climate conditions and solid-liquid transformation.This study provides a scientific basis for evaluating the carrying capacity of the Qarhan solid potassium mine resources and a reference method and idea for the evaluation of salt deposits with similar geological conditions.
-
Key words:
- industrial CT /
- porosity /
- specific yield /
- potash ore /
- Qarhan Salt Lake
-
-
鲍云杰, 李志明, 杨振恒, 等, 2019.孔隙度测定误差及其控制方法研究[J].石油实验地质, 41(4): 593-597.
蔡克勤, 高建华, 1994.察尔汗盐湖钾盐矿床的形成条件[J].地学前缘, 1(4): 231-233.
柴达木综合地质矿产勘查院, 2023.盐湖孔给度样品试验方法说明告知[Z].格尔木: 柴达木综合地质矿产勘查院: 1-2.
陈超, 魏彪, 梁婷, 等, 2013.一种基于工业CT 技术的岩芯样品孔隙度测量分析方法[J].物探与化探, 37(3): 500-507.
陈文祥, 张强, 赵小刚, 等, 2022.察尔汗盐湖钾矿资源利用探讨[J].盐科学与化工, 51(8): 50-54.
崔子豪, 赵艳军, 刘万平, 等, 2023.柴达木盆地别勒滩地区深部卤水储层空间分布特征研究[J].岩石矿物学杂志, 42(5):723-734.
鄂崇毅, 侯光良, 吴成永, 等, 2013.柴达木盆地近50 年气温变化时空分布特征分析[J].干旱区资源与环境, 27(10): 94-99.
方辉煌, 树勋, 刘世奇, 等, 2018.基于微米焦点CT 技术的煤岩数字岩石物理分析方法--以沁水盆地伯方3 号煤为例[J].煤田地质与勘探, 46(5): 167-174, 181.
勾青梅, 2011.中国察尔汗盐湖资源环境演化研究[D].长沙:湖南师范大学.
顾新鲁, 于咏梅, 李明, 等, 2009.液体矿产资源估算中储卤介质孔隙(给水)度参数的计算分析[J].盐湖研究, 17(4):32-36.
候超, 靳晓光, 何杰, 2023.基于核磁共振技术的硬石膏岩孔隙结构冻融损伤特性研究[J/OL].西南交通大学学报, https://link.cnki.net/urlid/51.1277.U.20230928.1433.020.
胡涵, 2024.青海察尔汗盐湖别勒滩区段固体钾矿液化效果评价[D].北京: 中国地质大学(北京).
焦鹏程, 刘成林, 王石军, 等, 2020.青海别勒滩低品位固体钾矿液化开发技术[M].北京: 科学出版社.
李波涛, 赵元艺, 叶荣, 等, 2012.青海察尔汗盐湖固体钾盐物质组成及意义[J].现代地质, 26(1): 71-84.
李晨安, 李承峰, 刘昌岭, 等, 2017.CT 图像法计算Berea 砂岩孔隙度[J].核电子学与探测技术, 37(5): 482-487.
李瑞琴, 刘成林, 赵艳军, 等, 2021.青海別勒滩试验区低品位固体钾盐液化开采的野外实验研究[J].岩石矿物学杂志, 40(1): 76-88.
李文学, 张凡凯, 王江, 等, 2018.罗北凹地液体钾盐矿深部承压卤水特征及其开采方法试验研究[J].地质学报, 92(8):1605-1616.
孟子圆, 孙卫, 刘登科, 等, 2019.联合压汞法的致密储层微观孔隙结构及孔径分布特征: 以鄂尔多斯盆地吴起地区长6储层为例[J].地质科技情报, 38(2): 208-216.
唐莹, 张健, 曹丛, 等, 2023.工业CT 应用及误差分析[J].仪器仪表标准化与计量, (2):18-20.
王兴富, 王石军, 王罗海, 等, 2019.柴达木低品位固体钾矿溶解转化实验及应用前景[J].化工矿产地质, 41(4): 299-305.
谢凯楠, 姜德义, 孙中光, 等, 2019.基于低场核磁共振的干湿循环对泥质砂岩微观结构劣化特性的影响[J].岩土力学, 40(2): 653-659, 667.
袁见齐, 杨谦, 孙大鹏, 等, 1995.察尔汗盐湖钾盐矿床的形成条件[M].北京: 地质出版社.
张朝中, 郭志平, 张朋, 等, 2009.工业CT 技术和原理[M].北京: 科学出版社.
张娟, 宋昌斌, 屈小荣, 等, 2020.察尔汗盐湖矿区气象因素变化规律分析[J].化工矿物与加工, 49(5): 48-50.
张云峰, 臧起彪, 孙博, 等, 2018.基于氮吸附和压汞数据确定致密储层孔径分布--以松辽盆地大安油田扶余油层为例[J].深圳大学学报理工版, 35(4): 353-361.
赵全升, 胡舒娅, 冯娟, 等, 2017.柴达木盆地盐湖卤水层给水度分布变化特征[J].地理科学, 37(1): 148-153.
赵艳军, 焦鹏程, 汪明泉, 等, 2021.柴达木盆地一里坪盐湖富锂卤水特征、储层物性及富水区分析[J].地质学报, 95(7):2062-2072.
郑绵平, 侯献华, 2017.青海盐湖资源综合利用与可持续发展战略[J].科技导报, 35(12): 11-13.
中华人民共和国自然资源部, 2020.矿产地质勘查规范 盐类第2 部分: 现代盐湖盐类: DZ/T 0212.2-2020[S].北京:中华人民共和国自然资源部.
邹冠贵, 彭苏萍, 龚飞, 等, 2023.岩石孔隙度测量实验装置设计与测试分析[J].实验技术与管理, 40(8): 136-140.
BAO Yunjie, LI Zhiming, YANG Zhenheng, et al., 2019.Porosity measurement error and its control method[J].Petroleum Geology & Experiment, 41(4): 593-597(in Chinese with English abstract).
CAI Keqin, GAO Jianhua, 1994.Formation conditions of potassium salt deposits in Chaerhan Salt Lake[J].Earth Science Frontiers, 1(4): 231-233(in Chinese).
CAMIGNATO S, DEWULF W, LEACH R.2018.Industrial X-Ray Computed Tomography[M].Cham: Springer International Publishing.
CHEN Chao, WEI Biao, LIANG Ting, et al., 2013.The application of industrial computation tomography (CT) to the analysis of core sample porosity[J].Geophysical & Geochemical Exploration, 37(3): 500-507(in Chinese with English abstract).
CHEN Wenxiang, ZHANG Qiang, ZHAO Xiaogang, et al., 2022.Discuss on the Utilization of Potassium Resources in Qarhan Salt Lake[J].Journal of Salt Science and Chemical Industry, 51(8): 50-54(in Chinese with English abstract).
CUI Zihao, ZHAO Yanjun, LIU Wanping, et al., 2023.Spatial distribution characteristics of deep brine reservoir in Beletan area, Qaidam Basin[J].Acta Petrologica et Mineralogica, 42(5): 723-734(in Chinese with English abstract).
CURTIS M E, SONDERGELD C H, AMBROSE R J, et al., 2012.Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging[J].AAPG Bulletin, 96(4): 665-677.
E Chongyi, HOU Guangliang, WU Chengyong, et al., 2013.The analysis on air temperature variation characteristic in Qaidamu basin (1961-2011) under the background of global warming[J].Journal of Arid Land Resources and Environment, 27(10): 94-99(in Chinese with English abstract).
FANG Huihuang, SANG Shuxun, LIU Shiqi, et al., 2018.Study of digital petrophysical analysis method based on micro-focus X-ray tomography: A case study from No.3 coal seam of Bofang mining area in southern Qinshui basin[J].Coal Geology& Exploration, 46(5): 167-174, 181(in Chinese with English abstract).
GOU Qingmei, 2011.The research of China Chaerhan Salt Lake resource environmental evolution[D].Changsha: Hunan Normal University(in Chinese with English abstract).
GU Xinlu, YU Yongmei, LI Ming et al., 2009.Parameters calculation and analysis of porosity and water supplying degree of brine storage medium in the estimation of liquid mineral resources[J].Journal of Salt Lake Research, 17(4): 32-36(in Chinese with English abstract).
HOU Chao, JIN Xiaoguang, HE Jie, 2023.Research on freeze-thaw damage characteristics of anhydrite rock pore structure based on nuclear magnetic resonance technology[J/OL].Journal of Southwest Jiaotong University, https://link.cnki.net/urlid/51.1277.U.20230928.1433.020 (in Chinese with English abstract).
HU Han, 2024.Evaluation of liquefaction effect of solid potassium ore in Bieletan section of Chaerhan Salt Lake, Qinghai[D].Beijing: China University of Geosciences (Beijing)(in Chinese with English abstract).
JIAO Pengcheng, LIU Chenglin, WANG Shijun, et al., 2020.Liquefaction development technology for low-grade solid potassium ore in Beiletan, Qinghai[M].Beijing: Science Press(in Chinese).
LI Botao, ZHAO Yuanyi, YE Rong, et al., 2012.Composition in Solid Potash Deposits of Qarhan Salt Lake, Qinghai Province and Its Significance[J].Geoscience, 26(1): 71-84(in Chinese with English abstract).
LI Chen’an, LI Chengfeng, LIU Changling, et al., 2017.A Method to Calculate the Porosity of Berea Sandstone Based on CT Digital Images[J].Nuclear Electronics & Detection Technology, 37(5): 482-487(in Chinese with English abstract).
LI Ruiqin, LIU Chenglin, ZHAO Yanjun, et al., 2021.A study of the field experimental liquefaction and exploitation of low-grade solid potassium resource in the Bieletan experimental area, Qinghai Province[J].Acta Petrologica et Mineralogica, 40(1): 76-88(in Chinese with English abstract).
LI Teng, WU Caifang, LIU Qiang, 2015.Characteristics of coal fractures and the influence of coal facies on coalbed methane productivity in the South Yanchuan Block, China[J].Journal of Natural Gas Science & Engineering, 22: 625-632.
LI Wenxue, ZHANG Fankai, WANG Jiang, et al., 2018.Characteristics and mining method experiment of deep artesian brine in potash deposit in the Luobei depression[J].Acta Geologica Sinica, 92(8): 1605-1616(in Chinese with English abstract).
MENG Ziyuan, SUN Wei, LIU Deng, et al., 2019.Combined Mercury Porosimetry to Characterize the Microscopic Pore Structure and Pore Size Distribution of Tight Reservoirs: A Case of Chang 6 Reservoir in Wuqi Area, Ordos Basin[J].Geological Science and Technology Information, 38(2):208-216(in Chinese with English abstract).
Ministry of Natural Resources of the People’s Republic of China, 2020.Code for geological exploration of mineral resources-Salts-Part 2: Modern salt lake salts: DZ/T 0212.2-2020[S].Beijing: Ministry of Natural Resources of the People’s Republic of China(in Chinese).
Qaidam Comprehensive Geological and Mineral Exploration Institute, 2023.Notice on the test method of Salt Lake porosity samples[Z].Golmud: Qaidam Comprehensive Geological and Mineral Exploration Institute: 1-2(in Chinese).
TANG Ying, ZHANG Jian, CAO Cong, et al., 2023.Application and Error Analysis of Industrial CT[J].Instrument Standardization & Metrology, (2): 18-20(in Chinese).
VERGÉS E, AYALA D, GRAU S, et al., 2008.Virtual porosimeter[J].Computer-Aided Design and Applications, 5(1-4):557-564.
VERGÉS E, TOST D, AYALA D, et al., 2011.3D pore analysis of sedimentary rocks[J].Sedimentary Geology, 234: 109-115.
WANG Xingfu, WANG Shijun, WANG Luohai et al., 2019.Dissolution and transformation experiment of low-grade solid potash for Qaidam and its application prospect[J].Geology of Chemical Minerals, 41(4): 299-305(in Chinese with English abstract).
XIE Kainan, JIANG Deyi, SUN Zhongguang, et al., 2019.Influence of drying-wetting cycles on microstructure degradation of argillaceous sandstone using low field nuclear magnetic resonance[J].Rock and Soil Mechanics, 40(2): 653-659(in Chinese with English abstract).
YUAN Jianqi, YANG Qian, SUN Dapeng, et al., 1995.The Formation Conditions of Potassium Salt Deposits in Chaerhan Salt Lake[M].Beijing: Geological Publishing House(in Chinese).
ZHANG Chaozhong, GUO Zhiping, ZHANG Peng, et al., 2009.Industrial CT Technology and Principles[M].Beijing: Science Press(in Chinese).
ZHANG Juan, SONG Changbin, QU Xiaorong, et al., 2020.Analysis on change rule of meteorological factors in Oarhan Salt Lake area[J].Industrial Minerals & Processing, 49(5):48-50(in Chinese with English abstract).
ZHANG Yunfeng, ZANG Qibiao, SUN Bo, et al., 2018.Determination of pore-throat size distribution of tight reservoirs based on nitrogen adsorption and mercury injection data: an example from Fuyu oil layer in Daan oilfield of Songliao basin[J].Journal of Shenzhen University Science and Engineering, 35(4): 353-361(in Chinese with English abstract).
ZHAO Quansheng, HU Shuya, FENG Juan, et al., 2017.Distribution and Variation Characteristics of Specific Yield in Brine Aquifer of the Saline Lake in Qaidam Basin[J].Scientia Geographica Sinica, 37(1): 148-153(in Chinese with English abstract).
ZHAO Yanjun, JIAO Pengcheng, WANG Mingquan, et al., 2021.Characteristics of lithium-rich brine, reservoir physical properties and analysis on water-rich areas in the Yiliping salt lake, Qaidam basin[J].Acta Geologica Sinica, 95(7): 2162-2172(in Chinese with English abstract).
ZHENG Mianping, HOU Xianhua, 2017.Comprehensive utilization and sustainable development strategy of salt lake resources in Qinghai[J].Science & Technology Review, 35(12):11-13(in Chinese).
ZOU Guangui, PENG Suping, GONG Fei, et al., 2023.Design and analysis of experimental device for rock porosity[J].Experimental Technology and Management, 40(8): 136-140(in Chinese with English abstract).
-
计量
- 文章访问数: 48
- PDF下载数: 6
- 施引文献: 0