Reverse Weathering in Salt Lakes on the Qinghai-Tibet Plateau and Its Implications for Key Element Cycling
-
摘要: 盐湖环境中的反风化(reverse weathering, 又称逆风化)是指逆向的化学风化作用, 通常指盐湖内部自生黏土矿物或碳酸盐矿物的形成过程, 是控制盐湖关键元素地球化学循环的重要机制。青藏高原是地球上关键的盐湖区, 既是内陆生态系统重要的碳库, 又富含锂、钾、铷、铯等关键矿产资源。青藏高原盐湖的水化学类型多样, 包括碳酸盐型、硫酸盐型和氯化物型, 不同的水化学特征决定了盐类和黏土矿物的种类及其形成机制的差异。本文综述了盐湖环境中硅酸盐和碳酸盐反风化作用的研究进展, 并探讨青藏高原盐湖反风化作用对关键元素地球化学循环的影响。青藏高原盐湖中自生黏土矿物的形成(如伊利石)是对盐湖卤水锂、钾、铷、铯等关键元素最重要的消耗机制; 而碳酸盐的形成对关键金属元素消耗影响很小, 除非形成含关键金属元素的独立矿物, 如扎布耶石。自生黏土矿物和碳酸盐的形成均会显著影响湖泊的无机碳循环。目前, 盐湖反风化作用程度的量化、控制因素解析和对关键元素损耗的影响程度是盐湖矿产资源研究的关键问题。当前非传统稳定同位素技术的快速发展为盐湖反风化研究提供了新机遇。青藏高原盐湖是反风化研究的天然实验室, 开展盐湖反风化研究不仅可以深入理解青藏高原盐湖的关键金属元素成矿作用及碳循环过程, 而且有助于丰富反风化理论。Abstract: Reverse weathering in salt lake environments, also known as reverse chemical weathering, refers to the process by which authigenic clay minerals or carbonates form within the lake.This mechanism plays a crucial role in regulating the geochemical cycling of key elements in these environments.The Qinghai-Tibet Plateau(QTP) represents a globally significant salt lake region, functioning as a major carbon sink for inland ecosystems, and is rich in essential mineral resources such as lithium, potassium, rubidium, and cesium.Salt lakes in the QTP exhibit diverse water chemistry types, including carbonate, sulfate, and chloride, with each type influencing the types and formation mechanisms of salts and clay minerals differently.This paper reviews recent advances in the study of reverse weathering in salt lake environments and examines how reverse weathering processes in QTP salt lakes affect the geochemical cycling of key elements.The formation of authigenic clay minerals (e.g., illite) in these lakes is a primary mechanism for the consumption of critical elements such as lithium, potassium, rubidium in the brines.In contrast, the formation of carbonates has a relatively minor impact on the consumption of these elements unless it involves the formation of critical metal-containing minerals such as zabuyelite.Both authigenic clay minerals and carbonates significantly influence the inorganic carbon cycles of the lakes.Quantifying the extent of reverse weathering, elucidating the limiting factors, and assessing the impact of key element depletion are pivotal issues in studying salt lake mineral resources.The rapid advancement of nontraditional stable isotope techniques offers new opportunities for reverse weathering research.Salt lakes in the QTP serve as natural laboratories for reverse weathering studies, providing insights into critical metal element formation and carbon cycling processes and contributing to the theoretical development of reverse weathering.
-
-
陈晨, 闫庆贺, 章荣清, 等, 2024.锂的圈层循环与资源富集过程:从高原盐湖到造山带伟晶岩[J].岩石学报, 40(2):591-604.
高扬, 罗飚, 沈迪, 等, 2023.青藏高原水体碳源汇过程的重新认知与挑战[J].湖泊科学, 35(6): 1853-1865.
苟龙飞, 金章东, 贺茂勇, 2017.锂同位素示踪大陆风化: 进展与挑战[J].地球环境学报, 8(2): 89-102.
金章东, 2011.湖泊沉积物的矿物组成、成因、环境指示及研究进展[J].地球科学与环境学报, 33(1): 34-44, 77.
李明慧, 朱立平, 王晓晓, 等, 2023.青藏高原湖泊中影响锂元素迁移和富集的矿物、元素及环境因素--以西藏郭扎错钻孔沉积物为例[J].中国无机分析化学, 13(7): 714-722.
李庆宽, 王建萍, 樊启顺, 等, 2023.西藏盐湖沉积物: 一种潜在的铷、铯资源[J].地质学报, 97(10): 3410-3420.
刘喜方, 郑绵平, 齐文, 2007.西藏扎布耶盐湖超大型B、Li 矿床成矿物质来源研究[J].地质学报, 81(12): 1709-1715.
雒洋冰, 郑绵平, 任雅琼, 2017.青藏高原特种盐湖与深部火山-地热水的相关性[J].科技导报, 35(12): 44-48.
吕苑苑, 2024.青藏高原盐湖硼、锂同位素变化规律及其对当雄错盐湖资源评价应用[J].地质力学学报, 30(1): 107-128.
潘彤, 陈建洲, 丁成旺, 等, 2023.柴达木盆地盐湖黏土中锂、铷、铯超常富集及其开发潜力[J].中国地质, 50(6):1925-1927.
佟伟, 廖志杰, 刘时彬, 等, 2000.西藏温泉志[M].北京: 科学出版社.
汪齐连, 赵志琦, 刘丛强, 2006.锂同位素在环境地球化学研究中的新进展[J].矿物学报, 26(2): 196-202.
吴雅琴, 赵志琦, 2011.高岭石和蒙脱石吸附Li+的实验研究[J].矿物学报, 31(2): 291-295.
肖应凯, 祁海平, 王蕴慧, 等, 1994.青海大柴达木湖卤水、沉积物和水源水中的锂同位素组成[J].地球化学, 23(4):329-338.
徐昶, 1982.柴达木盆地盐湖沉积物中的粘土矿物[J].矿物学报, 2(3): 226-230.
徐昶, 1985.青藏盐湖沉积物中粘土矿物的初步研究[J].地质科学, 20(1): 87-96.
徐昶, 1988.中国一些盐湖粘土矿物的初步研究[J].海洋与湖沼19(3): 278-285.
徐昶, 1993.中国盐湖粘土矿物研究[M].北京: 科学出版社.
杨守业, 贾琦, 许心宁, 等, 2023.海底反风化作用与关键元素循环[J].海洋地质与第四纪地质, 43(3): 26-34.
余俊清, 洪荣昌, 高春亮, 等, 2018.柴达木盆地盐湖锂矿床成矿过程及分布规律[J].盐湖研究, 26(1): 7-14.
赵彬, 姚鹏, 杨作升, 等, 2018.大河影响下的边缘海反风化作用[J].地球科学进展, 33(1): 42-51.
赵越, 马万平, 杨洋, 等, 2022.黏土矿物对Li+的吸附实验研究--对黏土型锂矿成矿启示[J].矿物学报, 42(2): 141-153.
郑绵平, 刘文高, 1987.新的锂矿物--扎布耶石(Zabuyelite)[J].地质论评, 33(4): 365-368.
郑绵平, 向军, 魏新俊, 1989.青藏高原盐湖[M].北京: 科学出版社.
郑绵平, 邢恩袁, 张雪飞, 等, 2023.全球锂矿床的分类、外生锂矿成矿作用与提取技术[J].中国地质, 50(6): 1599-1620.
郑绵平, 张永生, 刘喜方, 等, 2016.中国盐湖科学技术研究的若干进展与展望[J].地质学报, 90(9): 2123-2166.
郑绵平, 2001a.论中国盐湖[J].矿床地质, 20(2): 181-189, 128.
郑绵平, 2001b.青藏高原盐湖资源研究的新进展[J].地球学报, 22(2): 97-102.
郑绵平, 2010.中国盐湖资源与生态环境[J].地质学报, 84(11):1613-1622.
郑喜玉, 唐渊, 徐昶, 等, 1988.西藏盐湖[M].北京: 科学出版社.
ANDREWS E, POGGE VON STRANDMANN P A E, FANTLE M S, 2020.Exploring the importance of authigenic clay formation in the global Li cycle[J].Geochimica et Cosmochimica Acta, 289: 47-68.
AZCUE J M, ROSA F, MUDROCH A, 1996.Distribution of major and trace elements in sediments and pore water of Lake Erie[J].Journal of Great Lakes Research, 22(2): 389-402.
BARKAN E, LUZ B, LAZAR B, 2001.Dynamics of the carbon dioxide system in the Dead Sea[J].Geochimica et Cosmochimica Acta, 65(3): 355-368.
BAZILEVICH N I, KOVDA V A, KANER N, et al., 1970.The Geochemistry of Soda Soils (translated from Russian)[M].Springfield: National Technical Information Service.
BERGER G, SCHOTT J, GUY C, 1988.Behavior of Li, Rb and Cs during basalt glass and olivine dissolution and chlorite, smectite and zeolite precipitation from seawater:Experimental investigations and modelization between 50°and 300 ℃[J].Chemical Geology, 71(4): 297-312.
BISOGNI JR J J, ARROYO S L, 1991.The effect of carbon dioxide equilibrium on pH in dilute lakes[J].Water research, 25(2): 185-190.
CAO Cheng, BATAILLE C P, SONG Haijun, et al., 2022.Persistent Late Permian to Early Triassic warmth linked to enhanced reverse weathering[J].Nature Geoscience, 15(10):832-838.
CHAN L H, EDMOND J M, THOMPSON G, et al., 1992.Lithium isotopic composition of submarine basalts: Implications for the lithium cycle in the oceans[J].Earth and Planetary Science Letters, 108(1-3): 151-160.
CHEN Chen, LEE C T A, TANG Ming, et al., 2020.Lithium systematics in global arc magmas and the importance of crustal thickening for lithium enrichment[J].Nature Communications, 11(1): 5313.
CHEN Chen, YAN Qinghe, ZHANG Rongqing, et al., 2024.Lithium mineralization in plateau brines and orogen pegmatites: A lithium cycling perspective[J].Acta Petrologica Sinica, 40(2): 591-604(in Chinese with English abstract).
CORNELL R M, 1993.Adsorption of cesium on minerals: A review[J].Journal of Radioanalytical and Nuclear Chemistry, 171(2): 483-500.
DARRAGI F, TARDY Y, 1987.Authigenic trioctahedral smectites controlling pH, alkalinity, silica and magnesium concentrations in alkaline lakes[J].Chemical Geology, 63(1-2): 59-72.
DAY C C, POGGE VON STRANDMANN P A E, MASON A J, 2021.Lithium isotopes and partition coefficients in inorganic carbonates: Proxy calibration for weathering reconstruction[J].Geochimica et Cosmochimica Acta, 305: 243-262.
DU Jianghui, HALEY B A, MIX A C, et al., 2022.Reactive-transport modeling of neodymium and its radiogenic isotope in deep-sea sediments: The roles of authigenesis, marine silicate weathering and reverse weathering[J].Earth and Planetary Science Letters, 596: 117792.
EUGSTER H P, HARDIE L A, 1978.Saline lakes[M]//Lakes:chemistry, geology, physics.New York: Springer237-293.
GANOR J, MOGOLLÓN J L, LASAGA A C, 1995.The effect of pH on kaolinite dissolution rates and on activation energy[J].Geochimica et Cosmochimica Acta, 59(6): 1037-1052.
GAO Yang, LUO Biao, SHEN Di, et al., 2023.Recognition and challenges of the inland water carbon source and sink processes on the Qinghai-Tibet Plateau[J].Journal of Lake Sciences, 35(6): 1853-1865(in Chinese with English abstract).
GARRELS R M, MACKENZIE F T, 1971.Evolution of sedimentary rocks[M].New York: W W Norton & Company Ltd.
GAST R G, 1972.Alkali metal cation exchange on chambers montmorillonite[J].Soil Science Society of America Journal, 36(1): 14-19.
GOLAN R, GAVRIELI I, GANOR J, et al., 2016.Controls on the pH of hyper-saline lakes–A lesson from the Dead Sea[J].Earth and Planetary Science Letters, 434: 289-297.
GOU Longfei, JIN Zhangdong, HE Maoyong, 2017.Using lithium isotopes traces continental weathering: Progresses and challenges[J].Journal of Earth Environment, 8(2): 89-102(in Chinese with English abstract).
HAMMOND D, 2001.Pore water chemistry[M]//Encyclopedia of Ocean Sciences.Amsterdam: Elsevier: 2263-2271.
HARDER H, 1974.Illite mineral synthesis at surface temperatures[J].Chemical Geology, 14(4): 241-253.
HEDENQUIST J W, ARRIBAS A, GONZALEZ-URIEN E, 2000.Exploration for epithermal gold deposits[M]//HAGEMANN S G, BROWN P E.Gold in 2000: Reviews in Economic Geology.Littleton: Society of Economic Geologists: 245-277.
HIDAYAH R A, ADI PRASETIYA I G N, DZAKIYA N A, 2022.Alteration Characteristics and Precious Metal Availability in Gunung Gembes & Surroundings, Jeruk Village, Pacitan Regency, East Java Province[J].Journal of Applied Geospatial Information, 6(1): 565-568.
HINDSHAW R S, TOSCA R, GOÛT T L, et al., 2019.Experimental constraints on Li isotope fractionation during clay formation[J].Geochimica et Cosmochimica Acta, 250:219-237.
HUH Y, CHAN L H, ZHANG Libo, et al., 1998.Lithium and its isotopes in major world rivers: Implications for weathering and the oceanic budget[J].Geochimica et Cosmochimica Acta, 62(12): 2039-2051.
ISSON T T, PLANAVSKY N J, 2018.Reverse weathering as a long-term stabilizer of marine pH and planetary climate[J].Nature, 560(7719): 471-475.
ISSON T, RAUZI S, 2024.Oxygen isotope ensemble reveals Earth’s seawater, temperature, and carbon cycle history[J].Science, 383(6683): 666-670.
JIA Junjie, SUN Kun, LÜ Sidan, et al., 2022.Determining whether Qinghai–Tibet Plateau waterbodies have acted like carbon sinks or sources over the past 20 years[J].Science Bulletin, 67(22): 2345-2357.
JING Zhangdong, 2011.Composition, origin and environmental interpretation of minerals in lake sediments and recent progress[J].Journal of Earth Sciences and Environment, 33(1):34-44, 77(in Chinese with English abstract).
JONES B F, WEIR A H, 1983.Clay minerals of lake abert, an alkaline, saline lake[J].Clays and Clay Minerals, 31(3):161-172.
KÖHLER S J, DUFAUD F, OELKERS E H, 2003.An experimental study of illite dissolution kinetics as a function of ph from 1.4 to 12.4 and temperature from 5 to 50 ℃[J].Geochimica et Cosmochimica Acta, 67(19): 3583-3594.
KONDRATYEV K Y, ADAMENKO V N, VLASOV V P, et al., 2018.Using large lakes as analogues for oceanographic studies[M]//Modeling Marine Systems.Boca Raton: CRC Press: 299-344.
LERMAN A, STUMM W, 1989.CO2 storage and alkalinity trends in lakes[J].Water Research, 23(2): 139-146.
LI Fangbing, PENMAN D, PLANAVSKY N, et al., 2021.Reverse weathering may amplify post-Snowball atmospheric carbon dioxide levels[J].Precambrian Research, 364: 106279.
LI Gaojun, ELDERFIELD H, 2013.Evolution of carbon cycle over the past 100 million years[J].Geochimica et Cosmochimica Acta, 103: 11-25.
LI Minghui, SUN Shurui, FANG Xiaomin, et al., 2018.Clay minerals and isotopes of Pleistocene lacustrine sediments from the western Qaidam Basin, NE Tibetan Plateau[J].Applied Clay Science, 162: 382-390.
LI Minghui, ZHU Liping, WANG Xiaoxiao, et al., 2023.Minerals, Elements and Environmental Factors Affecting the Migration and Enrichment of Lithium in the Qinghai-Tibet Plateau Lakes: A Case Study of Sediments in Gozha Co Borehole, Tibet[J].Chinese Journal of Inorganic Analytical Chemistry, 13(7): 714-722(in Chinese with English abstract).
LI Qingkuan, WANG Jianping, FAN Qishun, et al., 2023.Rubidium and cesium enrichment in lacustrine sediments from Tibetan salt lakes: A potential resource[J].Acta Geologica Sinica, 97(10): 3410-3420(in Chinese with English abstract).
LI Weimo, WANG Binbin, MA Yaoming, 2024.Quantifying the CO2 sink intensity of large and small saline lakes on the Tibetan Plateau[J].Science of the Total Environment, 938:173408.
LI Yulong, MIAO Weiliang, HE Maoyong, et al., 2023.Origin of lithium-rich salt lakes on the western Kunlun Mountains of the Tibetan Plateau: Evidence from hydrogeochemistry and lithium isotopes[J].Ore Geology Reviews, 155: 105356.
LI Zhengyan, HE Maoyong, LI Binkai, et al., 2024.Multi-isotopic composition (Li and B isotopes) and Hydrochemistry characterization of the Lakko Co Li-Rich Salt Lake in Tibet, China: Origin and Hydrological Processes[J].Journal of Hydrology, 630: 130714.
LIAO Yuanshan, XIAO Qitao, LI Yimin, et al., 2024.Salinity is an important factor in carbon emissions from an inland lake in arid region[J].Science of the Total Environment, 906: 167721.
LIN Yongjie, KNAPP W J, LI Weiqiang, et al., 2023.Magnesium Isotope Constraints on the Holocene Hydromagnesite Formation in Alkaline Lake Dujiali, Central Qinghai-Tibetan Plateau[J].Journal of Geophysical Research: Earth Surface, 128(3): e2022JF006907.
LIN Yongjie, MERLI M, CENSI P, et al., 2024.Experimental and theoretical constraints on lithium isotope fractionation during brine evaporation and halite precipitation[J].Geochimica et Cosmochimica Acta, 374: 250-263.
LIU Xifang, ZHENG Mianping, QI Wen, 2007.Sources of Ore-Forming Materials of the Superlarge B and Li Deposit in Zabuye Salt Lake, Tibet, China[J].Acta Geologica Sinica, 81(12): 1709-1715(in Chinese).
LOWSON R T, COMARMOND M C J, RAJARATNAM G, et al., 2005.The kinetics of the dissolution of chlorite as a function of pH and at 25 ℃[J].Geochimica et Cosmochimica Acta, 69(7): 1687-1699.
LUO Yangbing, ZHENG Mianping, REN Yaqiong, 2017.Metallogenic correlation of special salt lake and hydrotherm, Qinghai-Tibet Plateau, China[J].Science & Technology Review, 35(12): 44-48(in Chinese with English abstract).
LÜ Yuanyuan, 2024.Variation patterns of boron and lithium isotopes in salt lakes on the Qinghai-Tibetan Plateau and their application in evaluating resources in the Damxung Co salt lake[J].Journal of Geomechanics, 30(1): 107-128(in Chinese with English abstract).
MACKENZIE F T, GARRELS R M, 1966.Chemical mass balance between rivers and oceans[J].American Journal of Science, 264(7): 507-525.
MACKENZIE F T, KUMP L R, 1995.Reverse weathering, clay mineral formation, and oceanic element cycles[J].Science, 270(5236): 586.
MARCÉ R, OBRADOR B, MORGUÍ J A, et al., 2015.Carbonate weathering as a driver of CO2 supersaturation in lakes[J].Nature Geoscience, 8: 107-111.
MESSAGER M L, LEHNER B, GRILL G, et al., 2016.Estimating the volume and age of water stored in global lakes using a geo-statistical approach[J].Nature Communications, 7:13603.
MICHALOPOULOS P, ALLER R C, REEDER R J, 2000.Conversion of diatoms to clays during early diagenesis in tropical, continental shelf muds[J].Geology, 28(12):1095-1098.
MICHALOPOULOS P, ALLER R C, 1995.Rapid clay mineral formation in Amazon Delta sediments: Reverse weathering and oceanic elemental cycles[J].Science, 270(5236):614-617.
MILLOT R, SCAILLET B, SANJUAN B, 2010.Lithium isotopes in island arc geothermal systems: Guadeloupe, Martinique(French West Indies) and experimental approach[J].Geochimica et Cosmochimica Acta, 74(6): 1852-1871.
MISRA S, FROELICH P N, 2012.Lithium isotope history of Cenozoic seawater: Changes in silicate weathering and reverse weathering[J].Science, 335(6070): 818-823.
PAN Tong, CHEN Jianzhou, DING Chengwang, et al., 2023.Supernormal enrichment of lithium, rubidium and cesium and its development potential in the clay of Salt Lake of Qaidam Basin[J].Geology in China, 50(6): 1925-1927(in Chinese with English abstract).
PISTINER J S, HENDERSON G M, 2003.Lithium-isotope fractionation during continental weathering processes[J].Earth Planetary Science Letters, 214(1-2): 327-339.
POGGE VON STRANDMANN P A E, FRASER W T, HAMMOND S J, et al., 2019.Experimental determination of Li isotope behaviour during basalt weathering[J].Chemical Geology, 517: 34-43.
POGGE VON STRANDMANN P A E, LIU Xianyi, LIU Chunyao, et al., 2022.Lithium isotope behaviour during basalt weathering experiments amended with organic acids[J].Geochimica et Cosmochimica Acta, 328: 37-57.
RAHROMOSTAQIM M, SAHIMI M, 2019.Molecular dynamics simulation of hydration and swelling of mixed-layer clays in the presence of carbon dioxide[J].The Journal of Physical Chemistry C, 123(7): 4243-4255.
RAMOS D P S, MORGAN L E, LLOYD N S, et al., 2018.Reverse weathering in marine sediments and the geochemical cycle of potassium in seawater: Insights from the K isotopic composition (41K/39K) of deep-sea pore-fluids[J].Geochimica et Cosmochimica Acta, 236: 99-120.
SULPIS O, HUMPHREYS M P, WILHELMUS M M, et al., 2022.RADIv1: A non-steady-state early diagenetic model for ocean sediments in Julia and MATLAB/GNU Octave[J].Geoscientific Model Development, 15(5): 2105-2131.
TEPPEN B J, MILLER D M, 2006.Hydration energy determines isovalent cation exchange selectivity by clay minerals[J].Soil Science Society of America Journal, 70(1): 31-40.
TOMASCAK P B, HEMMING N G, HEMMING S R, 2003.The lithium isotopic composition of waters of the Mono Basin, California[J].Geochimica et Cosmochimica Acta, 67(4): 601-611.
TONG Wei, LIAO Zhijie, LIU Shibin, et al, 2000.Tibetan Hot Springs[M].Beijing: Science Press(in Chinese).
URBAN N R, AUER M T, GREEN S A, et al., 2005.Carbon cycling in lake superior[J].Journal of Geophysical Research(Oceans), 110: C06S90.
VON DAMM K L, EDMOND J M, 1984.Reverse weathering in the closed-basin lakes of the Ethiopian Rift[J].American Journal of Science, 284(7): 835-862.
WAY J T, 1852.On the power of soils to absorb manure[J].Journal of the Royal Agricultural Society of England, 13: 123-143.
WEYNELL M, WIECHERT U, SCHUESSLER J A, 2017.Lithium isotopes and implications on chemical weathering in the catchment of Lake Donggi Cona, northeastern Tibetan Plateau[J].Geochimica et Cosmochimica Acta, 213: 155-177.
WU Yaqin, ZHAO Zhiqi, 2011.Experimental study on the adsorption of Li+on kaolinite and montmorillonite[J].Acta Mineralogica Sinica, 31(2): 291-295(in Chinese with English abstract).
XIAO Yingkai, QI Haiping, WANG Yunhui, et al., 1994.Lithium isotopic compositions of brine sediments and source water in Da Qaidam Lake, Qinghai, China[J].Geochimica, 23(4):329-338(in Chinese with English abstract).
XU Chang, 1982.Clay minerals in salt lake sediments of the Qaidam basin[J].Acta Mineralogica Sinica, 2(3): 226-230(in Chinese with English abstract).
XU Chang, 1985.Primary study of clay minerals and its significance in salt lake sediments of the Qinghai-Tibet[J].Scientia Geologica Sinica, 20(1): 87-96(in Chinese with English abstract).
XU Chang, 1988.Study of clay minerals in some salt lakes of China[J].Oceanologia et Limnologia Sinica, 19(3):278-285(in Chinese with English abstract).
XU Chang, 1993.Advance of Clay Minerals Research in Salt Lakes of China[M].Beijing: Science Press(in Chinese).
XUE Fei, TAN Hongbing, ZHANG Xiying, et al., 2024.Contrasting sources and enrichment mechanisms in lithium-rich salt lakes: A Li-H-O isotopic and geochemical study from northern Tibetan Plateau[J].Geoscience Frontiers, 15(2): 101768.
YAN Lijuan, ZHENG Mianping, 2015.The response of lake variations to climate change in the past forty years: A case study of the northeastern Tibetan Plateau and adjacent areas, China[J].Quaternary International, 371: 31-48.
YANG Shouye, JIA Qi, XU Xinning, et al., 2023.Submarine reverse weathering and its effect on oceanic elements cycling[J].Marine Geology & Quaternary Geology, 43(3):26-34(in Chinese with English abstract).
YAO Peng, ZHAO Bin, BIANCHI T S, et al., 2014.Remineralization of sedimentary organic carbon in mud deposits of the Changjiang Estuary and adjacent shelf:Implications for carbon preservation and authigenic mineral formation[J].Continental Shelf Research, 91: 1-11.
YOU Chenfeng, CHAN L H, GIESKES J M, et al., 2003.Seawater intrusion through the oceanic crust and carbonate sediment in the Equatorial Pacific: Lithium abundance and isotopic evidence[J].Geophysical Research Letters, 30(21): 2120.
YU Junqing, HONG Rongchang, GAO Chunliang, et al., 2018.Lithiunm brine deposits in Qaidam Basin: Constraints on formation processes and distribution pattern[J].Journal of Salt Lake Research, 26(1): 7-14(in Chinese with English abstract).
YURETICH R F, CERLING T E, 1983.Hydrogeochemistry of Lake Turkana, Kenya: Mass balance and mineral reactions in an alkaline lake[J].Geochimica et Cosmochimica Acta, 47(6):1099-1109.
ZHANG Libo, CHAN L H, GIESKES J M, 1998.Lithium isotope geochemistry of pore waters from Ocean Drilling Program Sites 918 and 919, Irminger Basin[J].Geochimica et Cosmochimica Acta, 62(14): 2437-2450.
ZHANG X Y, GAILLARDET J, BARRIER L, et al., 2022.Li and Si isotopes reveal authigenic clay formation in a palaeo-delta[J].Earth and Planetary Science Letters, 578:117339.
ZHANG X Y, SALDI G D, SCHOTT J, et al., 2021.Experimental constraints on Li isotope fractionation during the interaction between kaolinite and seawater[J].Geochimica et Cosmochimica Acta, 292: 333-347.
ZHAO Bin, YAO Peng, YANG Zuosheng, et al., 2018.Reverse weathering in river-dominated marginal seas[J].Advances in Earth Science, 33(1): 42-51(in Chinese with English abstract).
ZHAO Yue, MA Wanping, YANG Yang, et al., 2022.Experimental study on the adsorption of Li+ by clay minerals-implications for the mineralization of clay-type lithium deposit[J].Acta Mineralogica Sinica, 42(2): 141-153(in Chinese with English abstract).
ZHENG Mianping, LIU Wengao, 1987.Zabuyelite, a new lithium mineral[J].Geological Review, 33(4): 365-368(in Chinese with English abstract).
ZHENG Mianping, XIANG Jun, WEI Xinjun, 1989.Saline lakes on the qinghai-xizang(tibet)plateau[M].Beijing: Science Press(in Chinese).
ZHENG Mianping, XING Enyuan, ZHANG Xuefei, et al., 2023.Classification and mineralization of global lithium deposits and lithium extraction technologies for exogenetic lithium deposits[J].Geology in China, 50(6): 1599-1620(in Chinese with English abstract).
ZHENG Mianping, ZHANG Yongsheng, LIU Xifang, et al., 2016.Progress and Prospects of Salt Lake Research in China[J].Acta Geologica Sinica, 90(9): 2123-2166(in Chinese with English abstract).
ZHENG Mianping, 2001a.On saline lakes of China[J].Mineral Deposits, 20(2): 181-189, 128(in Chinese with English abstract).
ZHENG Mianping, 2001b.Study Advances in Saline Lake Resources on the Qinghai-Tibet Pleteau[J].Acta Geoscientia Sinica, 22(2): 97-102(in Chinese with English abstract).
ZHENG Mianping, 2010.Salt Lake Resources and Eco-environment in China[J].Acta Geologica Sinica, 84(11):1613-1622(in Chinese with English abstract).
ZHENG Xiyu, TANG Yuan, XU Chang, et al., 1988.Xizang Salt Lakes[M].Beijing: Science Press(in Chinese).
-
计量
- 文章访问数: 61
- PDF下载数: 9
- 施引文献: 0