Digital Magmatic Rocks Reveal Continental Assembly, Crustal Growth, Compositional Architecture, and Their Control on Metallogenesis
-
摘要: 岩浆岩是地球上最重要的地质体之一, 数字岩浆岩是数字地球的重要内容。本文综述了这方面的研究进展, 主要包括岩浆岩数据库创建及其应用研究取得的重要进展。研究团队创建了国内首个岩浆岩数据库及研究平台, 核心数据和平台功能在某些方面已优于国际已有数据库。基于这些数据, 研究团队编制并发布了一系列数字化全球岩浆岩、亚洲岩浆岩和深时岩浆岩图, 取得了以下重要研究进展: 1)创建了亚洲花岗岩时空演化格架, 提出亚洲大陆平直、弯曲旋转、剪刀状3 种方式和5 个阶段的聚合模式; 2)通过对比全球8 个典型造山带同位素填图, 确定了从典型增生到典型碰撞不同类型造山带的深部物质架构特征, 鉴别出显生宙巨量地壳生长, 丰富了地壳生长理论; 3)定量刻画了深部物质架构及其成矿制约, 构建了深部物质探测方法体系框架, 提出造山带分类和物质造山带新概念, 为深化认识造山带奠定了理论基础。Abstract: As magmatic rocks represent one of most significant geological records on Earth, digital magmatic rocks are an important component of the digital Earth. This study reviews the progress of research in this field, including the construction of a global magmatic rock database and its applications. The development of the first domestic magmatic rock database and research platform has achieved core data and platform functions that surpass some aspects of existing international databases. Based on these data, a series of digital maps of global, Asian, and deep-time magmatic rocks were compiled and published. Notably, the following significant enhancements have been made: 1) A spatiotemporal evolution framework for Asian granites has been established, proposing three modes (straight, curved rotation, and scissor-like) and five stages of the Asian continent assembly.2) By comparing isotopic mapping of eight typical orogenic belts worldwide, the deep material architecture characteristics of different types of orogenic belts have been identified, revealing significant crustal growth during the Phanerozoic and enriching the theory of crustal growth. 3) The deep material architecture and its constraints on mineralization have been quantitatively characterized, a framework for a deep material exploration method system has been developed, and new concepts of orogenic belt classification and material orogenic belts have been proposed. These findings contribute to a deeper understanding of orogenic belts.
-
Key words:
- igneous rock /
- database /
- isotopic mapping /
- deep material architecture /
- continental crust
-
-
侯增谦, 王涛, 2018. 同位素填图与深部物质探测(Ⅱ): 揭示地壳三维架构与区域成矿规律[J]. 地学前缘, 25(6): 20-41.
任纪舜, 赵磊, 徐芹芹, 等, 2016. 中国的全球构造位置和地球动力系统[J]. 地质学报, 90(9): 2100-2108.
王涛, 侯增谦, 2018. 同位素填图与深部物质探测(I): 揭示岩石圈组成演变与地壳生长[J]. 地学前缘, 25(6): 1-19.
王涛, 黄河, 杨立强, 等, 2022b. 揭示三维岩石圈物质架构的技术方法体系框架[J]. 地质学报, 96(10): 3589-3618.
王涛, 童英, 丁毅, 等, 2024. DDE-岩浆岩数据库初步构建与应用[J]. 岩石学报, 40(3): 873-888.
王涛, 张建军, 李舢, 等, 2022a. 东北亚晚古生代-中生代岩浆时空演化: 多重板块构造体制范围及叠合的鉴别证据[J].地学前缘, 29(2): 28-44.
肖文交, 宋东方, WINDLEY B F, 等, 2019. 中亚增生造山过程与成矿作用研究进展[J]. 中国科学: 地球科学, 49(10):1512-1545.
翟明国, 杨树锋, 陈宁华, 等, 2018. 大数据时代: 地质学的挑战与机遇[J]. 中国科学院院刊, 33(8): 825-831.
张颖慧, 王涛, 焦守涛, 等, 2020. 国内外岩浆岩数据库现状与应用前景[J]. 高校地质学报, 26(1): 11-26.
AHMED S E, 2017.Big and Complex Data Analysis:Methodologies and Applications[M]. Berlin: Springer Group.
CAWOOD P A, 2022. Untangling the history of oroclines and mountain belts[J]. National Science Review, 9: nwab211.
COLLINS W J, 2002. Hot orogens, tectonic switching, and creation of continental crust[J]. Geology, 30(6): 535-538.
COLLINS W J, BELOUSOVA E A, KEMP A I S, et al., 2011. Two contrasting Phanerozoic orogenic systems revealed by hafnium isotope data[J]. Nature Geoscience, 4: 333-337.
DENG Jun, WANG Changming, BAGAS L, et al., 2018. Crustal architecture and metallogenesis in the south-eastern North China Craton[J]. Earth-Science Reviews, 182: 251-272.
HOU Zengqian, DUAN Lianfeng, LU Yongjun, et al., 2015.Lithospheric architecture of the Lhasa terrane and its control on ore deposits in the Himalayan-Tibetan Orogen[J].Economic Geology, 110(6): 1541-1575.
HOU Zengqian, LIU Lijun, ZHANG Haijiang, et al., 2024.Cenozoic eastward growth of the Tibetan Plateau controlled by tearing of the Indian slab[J]. Nature Geoscience, 17(3):255-263.
HOU Zengqian, WANG Qingfei, ZHANG Haijiang, et al., 2022.Lithosphere architecture characterized by crust-mantle decoupling controls the formation of orogenic gold deposits[J].National Science Review, 10(3): nwac257.
HOU Zengqian, WANG Tao, 2018. Isotopic mapping and deep material probing(Ⅱ): imaging crustal architecture and its control on mineral systems[J]. Earth Science Frontiers, 25(6):20-41.
HOU Zengqian, XU Bo, ZHANG Haijiang, et al., 2023.Refertilized continental root controls the formation of the Mianning–Dechang carbonatite-associated rare-earth-element ore system[J]. Communications Earth & Environment, 4: 293.
HUANG He, WANG Tao, GUO Lei, et al., 2024. Crustal modification influenced by multiple convergent systems:Insights from Mesozoic magmatism in Northeastern China[J].Earth-Science Reviews, 252: 104737.
JAMIESON R A, BEAUMONT C, 2013. On the origin of orogens[J]. GSA Bulletin, 125(11-12): 1671-1702.
KRÖNER A, KOVACH V, ALEXEIEV D, et al., 2017. No excessive crustal growth in the Central Asian Orogenic Belt:Further evidence from field relationships and isotopic data[J].Gondwana Research, 50: 135-166.
REN Jishun, ZHAO Lei, XU Qinqin, et al., 2016. Global Tectonic Position and Geodynamic System of China[J]. Acta Geologica Sinica, 90(9): 2100-2108(in Chinese with English abstract).
ŞENGÖR A M C, 1993. Some Current Problems on the Tectonic Evolution of the Mediterranean During the Cainozoic[M]//BOSCHI E, MANTOVANI E, MORELLI A.Recent Evolution and Seismicity of the Mediterranean Region.Dordrecht: Springer Netherlands: 1-51.
ŞENGÖR A M C, 2021. Orogenic Belts[M]//GUPTA H K.Encyclopedia of Solid Earth Geophysics. Berlin: Springer Nature: 1166-1186.
WANG Chaoyang, WANG Tao, VAN STAAL C R, et al., 2024.Evolution of Silurian to Devonian magmatism associated with the Acadian orogenic cycle in eastern and southern Newfoundland Appalachians: Evidence for a three-stage evolution characterized by episodic hinterland- and foreland-directed migration of granitoid magmatism[J].Geological Society of America Bulletin, https://doi.org/10.1130/B37336.1.
WANG Chengshan, HAZEN R M, CHENG Qiuming, et al., 2021.The Deep-Time Digital Earth program: Data-driven discovery in geosciences[J]. National Science Review, 8(9): nwab027.
WANG Tao, HOU Zengqian, 2018. Isotopic mapping and deep material probing(I): Revealing the compositional evolution of the lithosphere and crustal growth processes[J]. Earth Science Frontiers, 25(6): 1-19(in Chinese with English abstract).
WANG Tao, HUANG He, YANG Liqiang, et al., 2022b. The methodological framework for deciphering 3-demensional material architecture of the lithosphere[J]. Acta Geologica Sinica, 96(10): 3589-3618(in Chinese with English abstract).
WANG Tao, HUANG He, ZHANG Jianjun, et al., 2023b.Voluminous continental growth of the Altaids and its control on metallogeny[J]. National Science Review, 10: nwac283.
WANG Tao, JAHN B M, KOVACH V P, et al., 2009. Nd–Sr isotopic mapping of the Chinese Altai and implications for continental growth in the Central Asian Orogenic Belt[J].Lithos, 110(1-4): 359-372.
WANG Tao, TONG Ying, DING Yi, et al., 2024. Preliminary construction and application of DDE-database of igneous rocks[J]. Acta Petrologica Sinica, 40(3): 873-888(in Chinese with English abstract).
WANG Tao, TONG Ying, HUANG He, et al., 2023a. Granitic record of the assembly of the Asian continent[J].Earth-Science Reviews, 237: 104298.
WANG Tao, TONG Ying, XIAO Wenjiao, et al., 2022. Rollback, scissor-like closure of the Mongol-Okhotsk Ocean and formation of an orocline: Magmatic migration based on a large archive of age data[J]. National Science Review, 9(5):nwab210.
WANG Tao, XIAO Wenjiao, COLLINS W J, et al., 2023c.Quantitative characterization of orogens through isotopic mapping[J]. Communications Earth and Environment, 4: 110.
WANG Tao, ZHANG Jianjun, LI Shan, et al., 2022a. Distinctive spatial-temporal evolution of Late Paleozoic to Mesozoic magmatic systems in Northeast Asia: Evidences for identification of the extent and superposition of multiple plate tectonic regimes[J]. Earth Science Frontiers, 29(2): 28-44(in Chinese with English abstract).
XIAO Wenjiao, SONG Dongfang, WINDLEY B F, et al., 2019.Research progresses of the accretionary processes and metallogenesis of the Central Asian Orogenic Belt[J]. Science China Earth Sciences, 49(10): 1512-1545(in Chinese with English abstract).
XIAO Wenjiao, WINDLEY B F, HAN Chunming, et al., 2018. Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia[J].Earth-Science Reviews, 186: 94-128.
XU Bo, HOU Zengqian, GRIFFIN W L, et al., 2021. Cenozoic lithospheric architecture and metallogenesis in Southeastern Tibet[J]. Earth-Science Reviews, 214: 103472.
YAKUBCHUK A, 2004. Architecture and Mineral Deposit Settings of the Altaid Orogenic Collage: A Revised Model[J]. Journal of Asian Earth Sciences, 23(5): 761-779.
ZHAI Mingguo, YANG Shufeng, CHEN Ninghua, et al., 2018. Big data epoch: Challenges and opportunities for geology[J].Bulletin of Chinese Academy of Sciences, 33(8): 825-831(in Chinese with English abstract).
ZHANG Yinghui, WANG Tao, JIAO Shoutao, et al., 2020. Review of Igneous Rock Databases and Their Application Prospect[J].Geological Journal of China Universities, 26(1): 11-26(in Chinese with English abstract).
ZHANG Zhiyu, HOU Zengqian, LÜ Qingtian, et al., 2023. Crustal architectural controls on critical metal ore systems in South China based on Hf isotopic mapping[J]. Geology, 51(8):738-742.
ZHAO Guochun, WANG Yuejun, HUANG Baochun, et al., 2018.Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea[J].Earth-Science Reviews, 186: 262-286.
-
计量
- 文章访问数: 40
- PDF下载数: 6
- 施引文献: 0