Gangdese: A Miocene Porphyry-skarn-epithermal Copper Belt over 1 000 km from East to West
-
摘要: 冈底斯岩浆弧的中东段发育众多铜多金属矿, 而在东经88°以西的冈底斯西段, 铜矿的成矿潜力、找矿方向等问题一直是国内外矿床界和企业界关注的焦点。在陆相火山岩区斑岩-矽卡岩-浅成低温热液成矿作用和矿床成矿系列理论的指导下, 通过对藏西北革吉陆相火山岩区开展矿产地质调查, 圈定短波红外光谱、水系、重砂、土壤地球化学-高精度大功率激电探测-矿物化学异常, 经钻探验证, 揭露了中新世嘎扎村组蚀变火山碎屑岩中巨厚的(> 550 m)高级泥化蚀变带, 发现了累计厚度137 m, 平均品位0.46%铜(金银)矿体, 实现了冈底斯西段铜矿找矿重大突破。赋矿火山岩中发育典型的高硫化浅成低温热液矿化蚀变矿物组合, 成岩成矿年龄为17 Ma左右, 是青藏高原找矿新区新发现的高硫化浅成低温热液型铜(金银)矿, 深部寻找斑岩铜矿的潜力大。珠勒—芒拉地区火山岩与冈底斯中—东段中新世岩浆岩具有相对一致的结晶年龄和岩石地球化学特点, 显示与印度—欧亚大陆碰撞后伸展环境有关。因此, 芒拉高硫化浅成低温热液型铜(金银)矿的发现, 不仅将冈底斯中新世斑岩-矽卡岩-浅成低温热液铜矿带向西延伸了近千km, 而且开辟了陆相火山岩区寻找碰撞型斑岩-浅成低温热液型铜矿的新方向。Abstract: The central and eastern part of Gangdese magmatic arc is rich in copper deposits.To the west of 88°E in longitude, the potential and prospecting of copper resources have always been key focus both in academic and industrial circles.Under the guidance of the metallogenic series theory, mineral geological survey was conducted in the continental volcanic rock area in northwest Xizang, and drilling was carried out in the altered volcanic clastic rocks of the Miocene Gazhacun Formation.It revealed a thick (> 550 m) advanced argillic alteration zone and a copper (gold and silver) orebody with a thickness of 137 m and an average Cu grade of 0.46%.This achieved a major breakthrough in copper exploration in the western section of Gangdese.The Zhule–Mangla area has typical high-sulfidation epithermal mineralization and alteration mineral assemblages, which belong to the new type of copper deposits in the Tibetan Plateau.Geochemical studies of the volcanic rocks aged approximately 17 Ma in the Zhule–Mangla area reveal that the Miocene potassic calc-alkaline magmatic rocks of Gangdese exhibit relatively consistent petrogeochemical characteristics.This is associated with the partial melting of the lower crust in the post-collision extensional tectonic setting of the India–Asia collision.Therefore, the discovery of the high-sulfidation epithermal copper deposit in Mangla extends the Gangdese Miocene porphyry-skarn-epithermal copper belt westward by nearly 1 000 km, and opens a new direction for searching for collisional porphyry-epithermal copper deposits in the continental volcanic rock region.
-
Key words:
- Tibetan Plateau /
- Gangdese /
- epithermal /
- porphyry /
- copper deposit
-
-
侯增谦, 曲晓明, 黄卫, 等, 2001.冈底斯斑岩铜矿成矿带有望成为西藏第二条“玉龙”铜矿带[J].中国地质, 28(10):27-29.
郎兴海, 陈毓川, 唐菊兴, 等, 2010.西藏谢通门县雄村斑岩型铜金矿集区I号矿体的岩石地球化学特征: 对成矿构造背景的约束[J].地质与勘探, 46(5): 887-898.
刘治博, 唐菊兴, 李志军, 等, 2023.西藏革吉县珠勒地区发现高硫化浅成低温热液铜金矿化类型[J].中国地质, 50(3):967-968.
唐菊兴, 李志军, 钟康惠, 等, 2006.西藏自治区谢通门县雄村铜矿勘探地质报告[R].成都: 成都理工大学.
唐菊兴, 王登红, 汪雄武, 等, 2010.西藏甲玛铜多金属矿矿床地质特征及其矿床模型[J].地球学报, 31(4): 495-506.
唐菊兴, 王勤, 杨欢欢, 等, 2017.西藏斑岩-矽卡岩-浅成低温热液铜多金属矿成矿作用、勘查方向与资源潜力[J].地球学报, 38(5): 571-613.
唐菊兴, 郑文宝, 陈毓川, 等, 2013.西藏甲玛铜多金属矿床深部斑岩矿体找矿突破及其意义[J].吉林大学学报(地球科学版), 43(4): 1100-1110.
王登红, 徐志刚, 盛继福, 等, 2014.全国重要矿产和区域成矿规律研究进展综述[J].地质学报, 88(12): 2176-2191.
王楠, 刘治博, 唐菊兴, 等, 2024.冈底斯成矿带西段首次发现中新世高硫化浅成低温热液型铜(金银)矿床[J].矿床地质, 43(6): 1-6.
王瑞, 朱弟成, 王青, 等, 2020.特提斯造山带斑岩成矿作用[J].中国科学: 地球科学, 50(12): 1919-1946.
谢富伟, 郎兴海, 唐菊兴, 等, 2022.西藏冈底斯成矿带成矿规律[J].矿床地质, 41(5): 952-974.
杨志明, 谢玉玲, 李光明, 等, 2005.西藏冈底斯斑岩铜矿带驱龙铜矿成矿流体特征及其演化[J].地质与勘探, 41(2):21-26.
郑有业, 高顺宝, 张大全, 等, 2006.西藏朱诺斑岩铜矿床发现的重大意义及启示[J].地学前缘, 13(4): 233-239.
郑有业, 薛迎喜, 程力军, 等, 2004.西藏驱龙超大型斑岩铜(钼)矿床: 发现、特征及意义[J].地球科学, 29(1): 103-108.
HOU Zengqian, QU Xiaoming, HUANG Wei, et al., 2001.Modes of occurrence of gold in supergene medium in arid areas of northern China[J].China Geology, 28(10): 27-29(in Chinese with English abstract).
LANG Xinghai, CHEN Yuchuan, TANG Juxing, et al., 2010.Characteristics of Rock Geochemistry of Orebody No.I in the Xiongcun Porphyry Copper-Gold Metallogenic District, Xietongmen County, Tibet: Constraints on Metallogenic Tectonic Settings[J].Geology and Exploration, 46(5):887-898(in Chinese with English abstract).
LIU Hong, HUANG Hanxiao, LI Guangming, et al., 2023.Subduction-related Late Triassic Luerma porphyry copper deposit, western Gangdese, Tibet, China: Evidence from geology, geochemistry, and geochronology[J].Ore Geology Reviews, 154: 105253.
LIU Zhibo, TANG Juxing, LI Zhijun, et al., 2023.First discovered Miocene high sulfur epithermal Cu-Au deposits in Zhule area, Geji County, Tibet[J].China Geoloy, 50(3): 967-968(in Chinese with English abstract).
PECCERILLO A, TAYLOR S R, 1976.Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J].Contributions to Mineralogy and Petrology, 58: 63-81.
SILLITOE R H, 2010.Porphyry copper systems[J].Economic Geology, 105(1): 3-41.
SUN S S, MCDONOUGH W F, 1989.Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J].Geological Society, London, Special Publications, 42(1): 313-345.
SUN Xiang, DENG Jun, LU Yongjun, et al., 2023.Two stages of porphyry Cu mineralization at Jiru in the Tibetan collisional orogen: Insights from zircon, apatite, and magmatic sulfides[J].Bulletin, 135(11-12): 2971-2986.
TANG Juxing, LI Zhijun, ZHONG Kanghui, et al., 2006.Geological report on the exploration of Xiongcun copper mine, Xietongmen County, Tibet Autonomous Region[R].Chengdu:Chengdu University of Technology(in Chinese).
TANG Juxing, WANG Denghong, WANG Xiongwu, et al., 2010.Geological Features and Metallogenic Model of the Jiama Copper-Polymetallic Deposit in Tibet[J].Journal of Earth Sciences, 31(4): 495-506(in Chinese with English abstract).
TANG Juxing, WANG Qin, YANG Huanhuan, et al., 2017.Mineralization, Exploration and Resource Potential of Porphyry-skarn-epithermal Copper Polymetallic Deposits in Tibet[J].Earth Journal, 38(5): 571-613(in Chinese with English abstract).
TANG Juxing, ZHENG Wenbao, CHEN Yuchuan, et al., 2013.Prospecting Breakthrough of the Deep Porphyry Ore Body and Its Significance in Jiama Copper Polymetallic Deposit, Tibet, China[J].Journal of Jilin University (Earth Science Edition), 43(4): 1100-1110(in Chinese with English abstract).
WANG Denghong, XU Zhigang, SHENG Jifu, et al., 2014.Progress on the Study of Regularity of Major Mineral Resources and Regional Metallogenic Regularity in China: A Review[J].Journal of Geology, 88(12): 2176-2191(in Chinese with English abstract).
WANG Rui, ZHU Dicheng, WANG Qing, et al., 2020.Porphyry mineralization in the Tethyan orogen[J].Science China Earth Sciences, 63(12): 2042-2067(in Chinese with English abstract).
WANG Nan, LIU Zhibo, TANG Juxing, et al., 2024.First discovery of Miocene high-sulfidation low-temperature hydrothermal copper (gold-silver) deposits in the western part of the Gondwana orogenic belt[J].Geology of Mineral Deposits, 43(6): 1-6(in Chinese with English abstract).
XIE Fuwei, LANG Xinghai, TANG Juxing, et al., 2022.Metallogenic regularity of Gangdese Metallogenic Belt, Tibet[J].Mineral Deposits, 41(5): 952-974(in Chinese with English abstract).
YANG Zhiming, XIE Yuling, LI Guangming, et al., 2005.Characteristics and forming process of ore-forming fluids at Qulong copper deposit in Gangdise porphyry copper belt, Tibet[J].Geology and Exploration, 41(2): 21-26(in Chinese with English abstract).
YANG Zhingming, COOKE D R, 2019.Porphyry copper deposits in China[J].SEG Special Publication, 22: 133-187.
ZHENG Youye, GAO Shunbao, ZHANG Dazhuan, et al., 2006.The discovery of the Zhunuo porphryr copper deposit in Tibet and its sugnificance[J].Geological Frontiers, 13(4):233-239(in Chinese with English abstract).
ZHENG Youye, XUE Yingxi, CHENG Lijun, et al., 2004.Characteristics and Significances of Qulong Superlarge Porphyry Copper(Molybdenum)Deposit, Tibet[J].Geoscience, 29(1): 103-108 (in Chinese with English abstract).
-
计量
- 文章访问数: 35
- PDF下载数: 17
- 施引文献: 0