中国自然资源航空物探遥感中心主办
地质出版社出版

徐州矿区2016—2018年地面沉降监测与分析

李梦梦, 范雪婷, 陈超, 李倩楠, 杨锦. 2021. 徐州矿区2016—2018年地面沉降监测与分析. 自然资源遥感, 33(4): 43-54. doi: 10.6046/zrzyyg.2020137
引用本文: 李梦梦, 范雪婷, 陈超, 李倩楠, 杨锦. 2021. 徐州矿区2016—2018年地面沉降监测与分析. 自然资源遥感, 33(4): 43-54. doi: 10.6046/zrzyyg.2020137
LI Mengmeng, FAN Xueting, CHEN Chao, LI Qiannan, YANG Jin. 2021. Monitoring and interpretation of land subsidence in mining areas in Xuzhou City during 2016—2018. Remote Sensing for Natural Resources, 33(4): 43-54. doi: 10.6046/zrzyyg.2020137
Citation: LI Mengmeng, FAN Xueting, CHEN Chao, LI Qiannan, YANG Jin. 2021. Monitoring and interpretation of land subsidence in mining areas in Xuzhou City during 2016—2018. Remote Sensing for Natural Resources, 33(4): 43-54. doi: 10.6046/zrzyyg.2020137

徐州矿区2016—2018年地面沉降监测与分析

  • 基金项目:

    江苏省测绘地理信息科研项目“江苏省InSAR地表沉降监测成果专题应用研究”(JSCHKY201803)

详细信息
    作者简介: 李梦梦(1993-),女,硕士研究生,主要研究方向为InSAR数据处理与应用。Email:dream_0705@sina.com。
  • 中图分类号: P237P258

Monitoring and interpretation of land subsidence in mining areas in Xuzhou City during 2016—2018

  • 时间序列合成孔径雷达干涉测量(interferometric synthetic aperture Radar,InSAR)技术因可以安全、高效地获取大范围、高精度地面沉降数据而被广泛应用。如何通过该技术准确、高效获取不同开采状态矿区的地面沉降数据,为矿区生态环境治理提供数据支撑依然是当前热点。文章基于58景Sentinel-1A影像数据,采用多主影像相干目标小基线InSAR方法(multiple master-image coherent target small-baseline interferometric SAR,MCTSB-InSAR),对徐州市6个矿区进行时序监测,得到矿区2016—2018年间地面沉降监测结果。用相近时段内的实测水准数据对年均沉降速率进行精度验证,二者差值的均方根误差为4.0 mm/a,满足监测要求。监测结果表明: 张双楼煤矿和三河尖煤矿沉降较为严重,最大年均沉降速率均超过100 mm/a,最大累计沉降量均超过300 mm; 旗山煤矿、拾屯煤矿、权台煤矿和张集煤矿沉降较轻,监测时段内沉降均发生在矿区范围内,无明显扩张趋势。结合江苏省2016年地理国情监测数据分析,三河尖煤矿有2 844个高相干点落入房屋及道路内,占该矿区总高相干点数的73.66%,张双楼煤矿有672个高相干点落入房屋及道路内,占该矿区总高相干点数的63.33%; 除权台煤矿外,其余矿区的时序沉降量与时间基本都呈线性关系,且在采矿区的沉降一般比停采矿区的线性规律更强,权台煤矿的时序沉降量符合非线性沉降规律。实验表明,Sentinel-1A影像数据和MCTSB-InSAR技术在矿区地面沉降监测与分析方面具有良好的应用前景。
  • 加载中
  • [1]

    Howladar M F. Environmental impacts of subsidence around the Barapukuria coal mining area in Bangladesh[J]. Energy,Ecology and Environment, 2016,1(6):370-385.

    [2]

    Sahu P, Lokhande R D. An investigation of sinkhole subsidence and its preventive measures in underground coal mining[J]. Procedia Earth and Planetary Science, 2015,11:63-75.

    [3]

    Saeidi A, Deck O, Verdel T. Comparison of building damage assessment methods for risk analysis in mining subsidence regions[J]. Geotechnical and Geological Engineering, 2013,31(4):1073-1088.

    [4]

    岳建平, 方露. 城市地面沉降监控理论与技术[M]. 北京: 科学出版社, 2012:1-5.

    [5]

    Yue J P, Fang L. Theory and technology of urban land subsidence monitoring[M]. Beijing: Science Press, 2012:1-5.

    [6]

    Liu X, Wang Y, Yan S. Interferometric SAR time series analysis for ground subsidence of the abandoned mining area in north Peixian using Sentinel-1A TOPS data[J]. Journal of the Indian Society of Remote Sensing, 2018,46(3):451-461.

    [7]

    何敏, 陆晓燕, 何秀凤. 利用D-InSAR二轨法监测徐州大屯中心区地表形变[J]. 地理空间信息, 2011,9(5):3-5.

    [8]

    He M, Lu X Y, He X F. Surface deformation in the central area of Xuzhou Datun was monitored by D-InSAR[J]. Geospatial Information, 2011,9(5):3-5.

    [9]

    郭炳跃, 何敏, 刘建东. 利用InSAR技术监测徐州市矿区地表变形[J]. 地质学刊, 2012,36(1):99-103.

    [10]

    Guo B Y, He M, Liu J D. Surface deformation monitoring with InSAR technology in Xuzhou[J]. Journal of Geology, 2012,36(1):99-103.

    [11]

    武继峰, 杨志强. InSAR技术应用于矿区开采沉陷监测的数据优选研究[J]. 测绘通报, 2013(s1):92-94.

    [12]

    Wu J F, Yang Z Q. The study of the data optimization of mining subsidence monitoring based on InSAR technique[J]. Bulletin of Surveying and Mapping, 2013(s1):92-94.

    [13]

    Yang C, Zhang D, Zhao C, et al. Ground deformation revealed by Sentinel-1 MSBAS-InSAR time-series over Karamay oilfield,China[J]. Remote Sensing, 2019,11(17):2027.

    [14]

    Chaussard E, Wdowinski S, Cabral-Cano E, et al. Land subsidence in central Mexico detected by ALOS InSAR time-series[J]. Remote Sensing of Environment, 2014,140:94-106.

    [15]

    李达, 邓喀中, 高晓雄, 等. 基于SBAS-InSAR的矿区地表沉降监测与分析[J]. 武汉大学学报(信息科学版), 2018,43(10):1531-1537.

    [16]

    Li D, Deng K Z, Gao X X, et al. Monitoring and analysis of surface subsidence in mining area based on SBAS-InSAR[J]. Geomatics and Information Science of Wuhan University, 2018,43(10):1531-1537.

    [17]

    Chatterjee R S, Thapa S, Singh K B, et al. Detecting,mapping and monitoring of land subsidence in Jharia Coalfield,Jharkhand,India by spaceborne differential interferometric SAR,GPS and precision levelling techniques[J]. Journal of Earth System Science, 2015,124(6):1359-1376.

    [18]

    Grzovic M, Ghulam A. Evaluation of land subsidence from underground coal mining using time SAR (SBAS and PSI) in Springfield,Illinois,USA[J]. Natural Hazards, 2015,79(3):1739-1751.

    [19]

    Bateson L, Cigna F, Boon D, et al. The application of the intermittent SBAS (ISBAS) InSAR method to the South Wales Coalfield,UK[J]. International Journal of Applied Earth Observation and Geoinformation, 2015,34:249-257.

    [20]

    Gupta M, Mohanty K K, Kumar D, et al. Monitoring surface elevation changes in Jharia coalfield, India using synthetic aperture Radar interferometry[J]. Environmental Earth Sciences, 2014,71(6):2875-2883.

    [21]

    陆燕燕, 何敏, 何秀凤. 基于DInSAR的徐州张双楼煤矿地表形变监测研究[J]. 测绘工程, 2013,22(6):61-64.

    [22]

    Lu Y Y, He M, He X F. Ground subsidence monitoring of Zhangshuanglou coal mine in Xuzhou City based on DInSAR[J]. Engineering of Surveying and Mapping, 2013,22(6):61-64.

    [23]

    Nannini M, Prats-Iraola P, Zan F D, et al. TOPS time series performance assessment with TerraSAR-X data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016,9(8):3832-3848.

    [24]

    吴文豪, 李陶, 龙四春, 等. 实时轨道条件下Sentinel-1卫星影像干涉配准[J]. 武汉大学学报(信息科学版), 2019,44(5):745-750.

    [25]

    Wu W H, Li T, Long S C, et al. Coregistration of sentinel-1 TOPS data for interferometric processing using real-time orbit[J]. Geomatics and Information Science of Wuhan University, 2019,44(5):745-750.

    [26]

    De Zan F, Prats-Iraola P, Scheiber R. Interferometry with TOPS:Coregistration and azimuth shifts[C]//Berlin:VDE Verlag GmbH, 2014:949-952.

    [27]

    康琪. TOPS模式数据InSAR形变监测配准方法[D]. 北京:中国测绘科学研究院, 2019.

    [28]

    Kang Q. Registration method of TOPS data for InSAR deformation monitoring[D]. Beijing:Chinese Academy of Surveying and Mapping, 2019.

    [29]

    Ferretti A, Prati C, Rocca F. Permanent scatterers in SAR interfero-metry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001,39(1):8-20.

    [30]

    Mora O, Mallorqui J J, Broquetas A. Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003,41(10):2243-2253.

    [31]

    张永红, 吴宏安, 孙广通. 时间序列InSAR技术中的形变模型研究[J]. 测绘学报, 2012,41(6):864-869.

    [32]

    Zhang Y H, Wu H A, Sun G T. Deformation model of time series interferometric SAR techniques[J]. Acta Geodaetica et Cartographica Sinica, 2012,41(6):864-869.

    [33]

    张永红, 吴宏安, 康永辉. 京津冀地区1992—2014年三阶段地面沉降InSAR监测[J]. 测绘学报, 2016,45(9):1050-1058.

    [34]

    Zhang Y H, Wu H A, Kang Y H. Ground Subsidence over Beijing-Tianjin-Hebei region during three periods of 1992 to 2014 monitored by interferometric SAR[J]. Acta Geodaetica et Cartographica Sinica, 2016,45(9):1050-1058.

    [35]

    国家测绘地理信息局. CH/T 6006—2018时间序列InSAR地表形变监测数据处理规范[S]. 北京: 测绘出版社, 2018.

    [36]

    National Bureau of Surveying,Mapping and Geographic Information. CH/T 6006—2018 specification of time series InSAR data processing for ground deformation monitoring[S]. Beijing: Surveying and Mapping Press, 2018.

  • 加载中
计量
  • 文章访问数:  1275
  • PDF下载数:  50
  • 施引文献:  0
出版历程
收稿日期:  2020-05-09
刊出日期:  2021-12-15

目录