中国自然资源航空物探遥感中心主办
地质出版社出版

K-means聚类引导的无人机遥感图像阈值分类方法

白俊龙, 王章琼, 闫海涛. 2021. K-means聚类引导的无人机遥感图像阈值分类方法. 自然资源遥感, 33(3): 114-120. doi: 10.6046/zrzyyg.2020301
引用本文: 白俊龙, 王章琼, 闫海涛. 2021. K-means聚类引导的无人机遥感图像阈值分类方法. 自然资源遥感, 33(3): 114-120. doi: 10.6046/zrzyyg.2020301
BAI Junlong, WANG Zhangqiong, YAN Haitao. 2021. A K-means clustering-guided threshold-based approach to classifying UAV remote sensed images. Remote Sensing for Natural Resources, 33(3): 114-120. doi: 10.6046/zrzyyg.2020301
Citation: BAI Junlong, WANG Zhangqiong, YAN Haitao. 2021. A K-means clustering-guided threshold-based approach to classifying UAV remote sensed images. Remote Sensing for Natural Resources, 33(3): 114-120. doi: 10.6046/zrzyyg.2020301

K-means聚类引导的无人机遥感图像阈值分类方法

  • 基金项目:

    中交第二公路勘察设计研究院有限公司科技研发项目“高精度无人机遥感技术在山区高速公路地质选线中的应用”

    武汉工程大学研究生教育创新基金项目(CX2020121)

详细信息
    作者简介: 白俊龙(1997-),男,硕士研究生,研究方向为遥感解译、图像处理。Email:2502567737@qq.com。
  • 中图分类号: TP751

A K-means clustering-guided threshold-based approach to classifying UAV remote sensed images

  • 针对无人机获取的高分辨率遥感图像分类需求,提出一种K-means聚类引导的阈值分类方法。首先计算出无人机遥感图像数据集的Average Silhouette值,作为K-means的最优聚类数目; 然后对原始图像进行K-means聚类初分割,对初分割结果中的非目标区域进行手工剔除; 再对处理之后的新对象进行阈值分割和图像优化,完成对象的提取; 最后对所有处理得到的地物标签进行合并,实现遥感图像的识别与分类。基于MATLAB/GUI平台,对提出的分类方法处理步骤进行集成,开发了无人机遥感图像分类处理系统,可对无人机遥感图像进行快速处理,实现半自动解译。对分类结果进行精度验证,其总体精度为91.09%,Kappa系数为0.88,表明该方法用于无人机遥感图像分类处理,能够实现地物的精确分类与信息提取。
  • 加载中
  • [1]

    Colomina I, Molina P. Unmanned aerial systems for photogrammetry and remote sensing:A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 92(6):79-97.

    [2]

    廖小罕, 肖青, 张颢. 无人机遥感:大众化与拓展应用发展趋势[J]. 遥感学报, 2019, 23(6):1046-1052.

    [3]

    Liao X H, Xiao Q, Zhang H. UAV remote sensing:Popularization and expand application development trend[J]. Journal of Remote Sensing, 2019, 23(6):1046-1052.

    [4]

    赵星涛, 胡奎, 卢晓攀, 等. 无人机低空航摄的矿山地质灾害精细探测方法[J]. 测绘科学, 2014, 39(6):49-52,64.

    [5]

    Zhao X T, Hu K, Lu X P, et al. Precise detection method for mine geological disasters using low-altitude photogrammetry based on unmanned aerial vehicle[J]. Science of Surveying and Mapping, 2014, 39(6):49-52,64.

    [6]

    付萧, 郭加伟, 刘秀菊, 等. 无人机高分辨率遥感影像地震滑坡信息提取方法[J]. 地震研究, 2018, 41(2):186-191.

    [7]

    Fu X, Guo J W, Liu X J, et al. Method of earthquake landslide information extraction based on high resolution unmanned aerial vehicle images[J]. Journal of Seismological Research, 2018, 41(2):186-191.

    [8]

    张康, 黑保琴, 李盛阳, 等. 基于CNN模型的遥感图像复杂场景分类[J]. 国土资源遥感, 2018, 30(4):49-55.doi: 10.6046/gtzyyg.2018.04.08.

    [9]

    Zhang K, Hei B Q, Li S Y, et al. Complex scene classification of remote sensing images based on CNN[J]. Remote Sensing for Land and Resources, 2018, 30(4):49-55.doi: 10.6046/gtzyyg.2018.04.08.

    [10]

    陈丹, 武淑琴, 屈萍, 等. 高分辨率遥感影像提取城市土地覆盖信息的决策树优化研究[J]. 统计与决策, 2014, 30(4):55-59.

    [11]

    Chen D, Wu S Q, Qu P, et al. Research on decision tree optimization for extracting urban land cover information from high-resolution remote sensing images[J]. Statistics & Decision, 2014, 30(4):55-59.

    [12]

    宋超峰. 基于机器学习的地物图像分类方法研究[D]. 太原:中北大学, 2018.

    [13]

    Song C F. Research on ground object image classification method based on machine learning[D]. Taiyuan:North University of China, 2018.

    [14]

    Cheng G, Guo L, Zhao T Y, et al. Automatic landslide detection from remote-sensing imagery using a scene classification method based on BoVW and pLSA[J]. International Journal of Remote Sensing, 2013, 34(1):45-59.

    [15]

    Fiorucci F, Cardinal M, Carla R, et al. Seasonal landslide mapping and estimation of landslide mobilization rates using aerial and satellite images[J]. Geomorphology, 2011, 129(1):59-70.

    [16]

    李艳娟, 牛梦婷, 李林辉. 基于蜂群K-means算法的遥感图像聚类应用研究[J]. 计算机工程与应用, 2019, 55(6):151-159.

    [17]

    Li Y J, Niu M T, Li L H. Research on remote sensing image clustering based on bee colony K-means algorithm[J]. Computer Engineering and Applications, 2019, 55(6):151-159.

    [18]

    MacQueen J. Some methods for classification and analysis of multivariate observation[C]// Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. Berkeley: University of California Press, 1967:281-297.

    [19]

    Hung C H, Chiou H M, Yang W N. Candidate groups search for K-harmonic means data clustering[J]. Applied Mathematical Modelling, 2013, 37(24):10123-10128.

    [20]

    杨俊闯, 赵超. K-Means聚类算法研究综述[J]. 计算机工程与应用, 2019, 55(23):7-14,63.

    [21]

    Yang J C, Zhao C. Survey on K-means clustering algorithm[J]. Computer Engineering and Applications, 2019, 55(23):7-14,63.

    [22]

    Saroj K. Review:Study on simple k mean and modified K mean clustering technique[J]. International Journal of Computer Science Engineering and Technology, 2016, 6(7):279-281.

    [23]

    李金涛, 艾萍, 岳兆新, 等. 基于K-means聚类算法的改进[J]. 国外电子测量技术, 2017, 36(6):9-13.

    [24]

    Li J T, Ai P, Yue Z X, et al. Improvement of clustering algorithm based on K-means[J]. Foreign Electronic Measurement Technology, 2017, 36(6):9-13.

    [25]

    王慧贤, 靳惠佳, 王娇龙, 等. k均值聚类引导的遥感影像多尺度分割优化方法[J]. 测绘学报, 2015, 59(5):526-532.

    [26]

    Wang H X, Jin H J, Wang J L, et al. Optimization approach for multi-scale segmentation of remotely sensed imagery under k-means clustering guidance[J]. Acta Geodaetica et Cartographica Sinica, 2015, 59(5):526-532.

    [27]

    杨宁, 唐常杰, 王悦, 等. 基于谱聚类的多数据流演化事件挖掘[J]. 软件学报, 2010, 21(10):2395-2409.

    [28]

    Yang N, Tang C J, Wang Y, et al. Mining evolutionary events from multi-streams based on spectral clustering[J]. Journal of Software, 2010, 21(10):2395-2409.

    [29]

    刘琴, 王恺乐, 饶卫雄. 不等长时间序列滑窗STS距离聚类算法[J]. 计算机科学与探索, 2015, 9(11):1301-1313.

    [30]

    Liu Q, Wang K L, Rao W X. Non-equal time series clustering algorithm with sliding window STS distance[J]. Journal of Frontiers of Computer Science and Technology, 2015, 9(11):1301-1313.

    [31]

    国土资源部. GB/T 21010—2017土地利用现状分类[S]. 北京: 中国标准出版社, 2017.

    [32]

    Ministry of Land and Resources. GB/T 21010—2017 Land Use Status Classification[S]. Beijing: China Standard Press, 2017.

    [33]

    杨永可, 肖鹏峰, 冯学智, 等. 大尺度土地覆盖数据集在中国及周边区域的精度评价[J]. 遥感学报, 2014, 18(2):453-475.

    [34]

    Yang Y K, Xiao P F, Feng X Z, et al. Comparison and assessment of large-scale land cover datasets in China and adjacent regions[J]. Journal of Remote Sensing, 2014, 18(2):453-475.

  • 加载中
计量
  • 文章访问数:  761
  • PDF下载数:  126
  • 施引文献:  0
出版历程
收稿日期:  2020-09-23
刊出日期:  2021-09-15

目录