A K-means clustering-guided threshold-based approach to classifying UAV remote sensed images
-
摘要: 针对无人机获取的高分辨率遥感图像分类需求,提出一种K-means聚类引导的阈值分类方法。首先计算出无人机遥感图像数据集的Average Silhouette值,作为K-means的最优聚类数目; 然后对原始图像进行K-means聚类初分割,对初分割结果中的非目标区域进行手工剔除; 再对处理之后的新对象进行阈值分割和图像优化,完成对象的提取; 最后对所有处理得到的地物标签进行合并,实现遥感图像的识别与分类。基于MATLAB/GUI平台,对提出的分类方法处理步骤进行集成,开发了无人机遥感图像分类处理系统,可对无人机遥感图像进行快速处理,实现半自动解译。对分类结果进行精度验证,其总体精度为91.09%,Kappa系数为0.88,表明该方法用于无人机遥感图像分类处理,能够实现地物的精确分类与信息提取。
-
关键词:
- K-means聚类 /
- 无人机遥感 /
- 阈值分割 /
- 图像分类 /
- MATLAB/GUI
Abstract: This study proposed a K-means clustering-guided threshold-based approach to classifying the high-resolution remote sensing images obtained using unmanned aerial vehicles (UAVs). The steps of the approach are as follows. First, calculate the average silhouette of the UAV remote sensing image dataset as the optimal number of clusters in the K-means clustering. Then perform K-means clustering on the original images, and manually remove non-target areas in the initial segmentation results. Afterward, perform threshold-based segmentation and image optimization on the new objects obtained to extract objects. Finally, combine all the feature tags obtained to realize the recognition and classification of remote sensing images. The abovementioned processing steps were integrated using the MATLAB/GUI platform. Based on this, a classification processing system of UAV remote sensing images was developed. It can quickly process UAV remote sensing images and achieve semi-automatic interpretation. The accuracy of the classification results was verified, obtaining an overall accuracy of 91.09% and a Kappa coefficient of 0.88. This indicates that the approach proposed in this paper can obtain high-quality segmentation results of UAV remote sensing images.-
Key words:
- K-means clustering /
- UAV remote sensing /
- threshold-based segmentation /
- image classification /
- MATLAB/GUI /
-
-
[1] Colomina I, Molina P. Unmanned aerial systems for photogrammetry and remote sensing:A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 92(6):79-97.
[2] 廖小罕, 肖青, 张颢. 无人机遥感:大众化与拓展应用发展趋势[J]. 遥感学报, 2019, 23(6):1046-1052.
[3] Liao X H, Xiao Q, Zhang H. UAV remote sensing:Popularization and expand application development trend[J]. Journal of Remote Sensing, 2019, 23(6):1046-1052.
[4] 赵星涛, 胡奎, 卢晓攀, 等. 无人机低空航摄的矿山地质灾害精细探测方法[J]. 测绘科学, 2014, 39(6):49-52,64.
[5] Zhao X T, Hu K, Lu X P, et al. Precise detection method for mine geological disasters using low-altitude photogrammetry based on unmanned aerial vehicle[J]. Science of Surveying and Mapping, 2014, 39(6):49-52,64.
[6] 付萧, 郭加伟, 刘秀菊, 等. 无人机高分辨率遥感影像地震滑坡信息提取方法[J]. 地震研究, 2018, 41(2):186-191.
[7] Fu X, Guo J W, Liu X J, et al. Method of earthquake landslide information extraction based on high resolution unmanned aerial vehicle images[J]. Journal of Seismological Research, 2018, 41(2):186-191.
[8] 张康, 黑保琴, 李盛阳, 等. 基于CNN模型的遥感图像复杂场景分类[J]. 国土资源遥感, 2018, 30(4):49-55.doi: 10.6046/gtzyyg.2018.04.08.
[9] Zhang K, Hei B Q, Li S Y, et al. Complex scene classification of remote sensing images based on CNN[J]. Remote Sensing for Land and Resources, 2018, 30(4):49-55.doi: 10.6046/gtzyyg.2018.04.08.
[10] 陈丹, 武淑琴, 屈萍, 等. 高分辨率遥感影像提取城市土地覆盖信息的决策树优化研究[J]. 统计与决策, 2014, 30(4):55-59.
[11] Chen D, Wu S Q, Qu P, et al. Research on decision tree optimization for extracting urban land cover information from high-resolution remote sensing images[J]. Statistics & Decision, 2014, 30(4):55-59.
[12] 宋超峰. 基于机器学习的地物图像分类方法研究[D]. 太原:中北大学, 2018.
[13] Song C F. Research on ground object image classification method based on machine learning[D]. Taiyuan:North University of China, 2018.
[14] Cheng G, Guo L, Zhao T Y, et al. Automatic landslide detection from remote-sensing imagery using a scene classification method based on BoVW and pLSA[J]. International Journal of Remote Sensing, 2013, 34(1):45-59.
[15] Fiorucci F, Cardinal M, Carla R, et al. Seasonal landslide mapping and estimation of landslide mobilization rates using aerial and satellite images[J]. Geomorphology, 2011, 129(1):59-70.
[16] 李艳娟, 牛梦婷, 李林辉. 基于蜂群K-means算法的遥感图像聚类应用研究[J]. 计算机工程与应用, 2019, 55(6):151-159.
[17] Li Y J, Niu M T, Li L H. Research on remote sensing image clustering based on bee colony K-means algorithm[J]. Computer Engineering and Applications, 2019, 55(6):151-159.
[18] MacQueen J. Some methods for classification and analysis of multivariate observation[C]// Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. Berkeley: University of California Press, 1967:281-297.
[19] Hung C H, Chiou H M, Yang W N. Candidate groups search for K-harmonic means data clustering[J]. Applied Mathematical Modelling, 2013, 37(24):10123-10128.
[20] 杨俊闯, 赵超. K-Means聚类算法研究综述[J]. 计算机工程与应用, 2019, 55(23):7-14,63.
[21] Yang J C, Zhao C. Survey on K-means clustering algorithm[J]. Computer Engineering and Applications, 2019, 55(23):7-14,63.
[22] Saroj K. Review:Study on simple k mean and modified K mean clustering technique[J]. International Journal of Computer Science Engineering and Technology, 2016, 6(7):279-281.
[23] 李金涛, 艾萍, 岳兆新, 等. 基于K-means聚类算法的改进[J]. 国外电子测量技术, 2017, 36(6):9-13.
[24] Li J T, Ai P, Yue Z X, et al. Improvement of clustering algorithm based on K-means[J]. Foreign Electronic Measurement Technology, 2017, 36(6):9-13.
[25] 王慧贤, 靳惠佳, 王娇龙, 等. k均值聚类引导的遥感影像多尺度分割优化方法[J]. 测绘学报, 2015, 59(5):526-532.
[26] Wang H X, Jin H J, Wang J L, et al. Optimization approach for multi-scale segmentation of remotely sensed imagery under k-means clustering guidance[J]. Acta Geodaetica et Cartographica Sinica, 2015, 59(5):526-532.
[27] 杨宁, 唐常杰, 王悦, 等. 基于谱聚类的多数据流演化事件挖掘[J]. 软件学报, 2010, 21(10):2395-2409.
[28] Yang N, Tang C J, Wang Y, et al. Mining evolutionary events from multi-streams based on spectral clustering[J]. Journal of Software, 2010, 21(10):2395-2409.
[29] 刘琴, 王恺乐, 饶卫雄. 不等长时间序列滑窗STS距离聚类算法[J]. 计算机科学与探索, 2015, 9(11):1301-1313.
[30] Liu Q, Wang K L, Rao W X. Non-equal time series clustering algorithm with sliding window STS distance[J]. Journal of Frontiers of Computer Science and Technology, 2015, 9(11):1301-1313.
[31] 国土资源部. GB/T 21010—2017土地利用现状分类[S]. 北京: 中国标准出版社, 2017.
[32] Ministry of Land and Resources. GB/T 21010—2017 Land Use Status Classification[S]. Beijing: China Standard Press, 2017.
[33] 杨永可, 肖鹏峰, 冯学智, 等. 大尺度土地覆盖数据集在中国及周边区域的精度评价[J]. 遥感学报, 2014, 18(2):453-475.
[34] Yang Y K, Xiao P F, Feng X Z, et al. Comparison and assessment of large-scale land cover datasets in China and adjacent regions[J]. Journal of Remote Sensing, 2014, 18(2):453-475.
-
计量
- 文章访问数: 761
- PDF下载数: 126
- 施引文献: 0