A hierarchical spatial-temporal fusion model
-
摘要: 时空数据融合能够有效提高高空间分辨率遥感数据的时间分辨率,但是目前广泛使用的时空自适应反射率融合模型在突变区域的预测效果不佳。针对这一问题,提出一种基于分层策略的时空融合模型(hierarchical spatial-temporal fusion model,H-STFM)。该模型首先根据相邻时刻低空间分辨率数据的反射率差值,将待预测的目标像元分为物候变化像元和突变像元; 然后对物候变化像元进行线性回归预测,对突变像元进行加权滤波预测; 最后将物候变化和突变区域的预测结果利用优化的时间加权函数融合生成最后预测图像。以两组中分辨率遥感数据MODIS和Landsat图像为基础数据进行实验对H-STFM模型进行了定性与定量评价。结果表明,提出模型的实验结果在方差误差与相对无量纲全局误差方面表现明显优于时空自适应融合模型。Abstract: The temporal resolution of high spatial resolution remote sensing data can be effectively improved by spatio-temporal fusion of remote sensing data. However, the most widely used spatial and temporal adaptive reflectance fusion model (STARFM) fails to achieve highly accurate prediction effects for areas with abrupt changes at present. Given this, this paper proposed a hierarchical spatial-temporal fusion model (H-STFM). In this model, the target pixels to be predicted are divided into pixels with phenological change and pixels with abrupt changes, which are predicted using linear regression and weighted filtering methods, respectively. Then the prediction results of the two types of pixels are fused using an optimized time weighted function to form the final prediction map. The H-STFM proposed in this paper was qualitatively and quantitatively assessed using two sets of medium-resolution remote sensing images from moderate resolution imaging spectrometer (MODIS) and Landsat satellite. As indicated by the experiment results, H-STFM is significantly superior to STARFM in terms of structural similarity and relative dimensionless global error.
-
Key words:
- spatio-temporal fusion /
- hierarchical /
- surface reflectance /
- Landsat /
- MODIS /
-
-
[1] 邬明权, 牛铮, 王长耀. 多源遥感数据时空融合模型应用分析[J]. 地球信息科学学报, 2014, 16(5):776-783.
[2] Wu M Q, Niu Z, Wang C Y. Assessing the accuracy of spatial and temporal image fusion model of complex area in south China[J]. Journal of Geo-Information Science, 2014, 16(5):776-783.
[3] Hilker T, Wulder M A, Coops N C, et al. Generation of dense time series synthetic Landsat data through data blending with MODIS using a spatial and temporal adaptive reflectance fusion model[J]. Remote Sensing of Environment, 2009, 113(9):1988-1999.
[4] Dong T F, Liu J G, Qian B D, et al. Estimating winter wheat biomass by assimilating leaf area index derived from fusion of Landsat-8 and MODIS data[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 49:63-74.
[5] Shen H F, Huang L W, Zhang L P, et al. Long-term and fine-scale satellite monitoring of the urban heat island effect by the fusion of multi-temporal and multi-sensor remote sensed data:A 26-year case study of the city of Wuhan in China[J]. Remote Sensing of Environment, 2016, 172:109-125.
[6] Weng Q H, Fu P, Gao F. Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data[J]. Remote Sensing of Environment, 2014, 145:55-67.
[7] Kong F J, Li X B, Wang H, et al. Land cover classification based on fused data from GF-1 and MODIS NDVI time series[J]. Remote Sensing, 2016, 8:741.
[8] Liu H, Weng Q H. Enhancing temporal resolution of satellite imagery for public health studies:A case study of West Nile Virus outbreak in Los Angeles in 2007[J]. Remote Sensing of Environment, 2012, 117:57-71.
[9] Wu M, Wu C, Huang W, et al. An improved high spatial and temporal data fusion approach for combining Landsat and MODIS data to generate daily synthetic Landsat imagery[J]. Information Fusion, 2016, 31:14-25.
[10] Fu D, Chen B, Wang J, et al. An improved image fusion approach based on enhanced spatial and temporal the adaptive reflectance fusion model[J]. Remote Sensing, 2013, 5(12):6346-6360.
[11] Huang B, Song H. Spatiotemporal reflectance fusion via sparse representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(10):3707-3716.
[12] 黄波, 赵涌泉. 多源卫星遥感影像时空融合研究的现状及展望[J]. 测绘学报, 2017, 46(10):1492-1499.
[13] Huang B, Zhao Y Q. Research status and prospect of spatiotemporal fusion of multi-source satellite remote sensing imagery[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1492-1499.
[14] Chen B, Chen L, Huang B, et al. Dynamic monitoring of the Poyang Lake wetland by integrating Landsat and MODIS observations[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 139:75-87.
[15] 蔡德文, 牛铮, 王力. 遥感数据时空融合技术在农作物监测中的适应性研究[J]. 遥感技术与应用, 2012, 27(6):927-932.
[16] Cai D W, Niu Z, Wang L. Adaptability research of spatial and temporal remote sensing data fusion technology in crop monitoring[J]. Remote Sensing Technology and Application, 2012, 27(6):927-932.
[17] Ping B, Meng Y, Su F. An enhanced linear spatio-temporal fusion method for blending landsat and MODIS data to synthesize landsat-like imagery[J]. Remote Sensing, 2018, 10(6):881.
[18] Gao F, Masek J, Schwaller M, et al. On the blending of the Landsat and MODIS surface reflectance:Predicting daily Landsat surface reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(8):2207-2218.
[19] Gevaert C M, Garcia-haro F J. A comparison of STARFM and an unmixing-based algorithm for Landsat and MODIS data fusion[J]. Remote Sensing of Environment, 2015,(156):34-44.
[20] Hilker T, Wulder M A, Coops N C, et al. A new data fusion model for high spatial-and temporal-resolution mapping of forest disturbance based on Landsat and MODIS[J]. Remote Sensing of Environment, 2009, 113(8):1613-1627.
[21] Zhu X, Chen J, Gao F, et al. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions[J]. Remote Sensing of Environment, 2010, 114(11):2610-2623.
[22] Belgiu M, Stein A. Spatiotemporal image fusion in remote sensing[J]. Remote Sensing, 2019, 11(7):818.
[23] 方帅, 姚振稷, 曹风云. 线性模型的遥感图像时空融合[J]. 中国图象图形学报, 2020, 25(3):579-592.
[24] Fang S, Yao Z J, Cao F Y. Spatio-temporal method of satellite image fusion based on linear model[J]. Journal of Image and Graphics, 2020, 25(3):579-592
[25] Cheng Q, Liu H Q, Shen H F, et al. A spatial and temporal nonlocal filter-based data fusion method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(8):4476-4488.
[26] Wang Q, Atkinson P M. Spatio-temporal fusion for daily Sentinel-2 images[J]. Remote Sensing of Environment, 2018(204):31-42.
[27] 刘慧琴, 吴鹏海, 沈焕锋, 等. 一种基于非局部滤波的遥感时空信息融合方法[J]. 地理与地理信息科学, 2015, 31(4):27-32.
[28] Liu H Q, Wu P H, Shen H F, et al. A spatio-temporal information fusion method based on non-local means filter[J]. Geography and Geo-Information Science, 2015, 31(4):27-32.
[29] Karydas C, Jiang B. Scale optimization in topographic and hydrographic feature mapping using fractal analysis[J]. ISPRS International Journal of Geo-Information, 2020, 9(11):631.
[30] 王茂芝, 徐文皙, 王璐, 等. 高光谱遥感影像端元提取算法研究进展及分类[J]. 遥感技术与应用, 2015, 30(4):616-625.
[31] Wang M Z, Xu W X, Wang L, et al. Research progress on endmember extraction algorithm and its classification of hyperspectral remote sensing imagery[J]. Remote Sensing Technology and Application, 2015, 30(4):616-625.
[32] 刘汉湖, 杨武年, 杨容浩. 高光谱遥感岩矿端元提取与分析方法研究[J]. 岩石矿物学杂志, 2013(2):213-220.
[33] Liu H H, Yang W N, Yang R H. The end-member extraction and analysis method for rocks and minerals using hyperspectral remote sensing image[J]. Acta Petrologica et Mineralogica, 2013(2):213-220.
-
计量
- 文章访问数: 1017
- PDF下载数: 143
- 施引文献: 0