中国自然资源航空物探遥感中心主办
地质出版社出版

基于多元数据的省会城市城中村精细提取

冯东东, 张志华, 石浩月. 2021. 基于多元数据的省会城市城中村精细提取. 自然资源遥感, 33(3): 272-278. doi: 10.6046/zrzyyg.2020368
引用本文: 冯东东, 张志华, 石浩月. 2021. 基于多元数据的省会城市城中村精细提取. 自然资源遥感, 33(3): 272-278. doi: 10.6046/zrzyyg.2020368
FENG Dongdong, ZHANG Zhihua, SHI Haoyue,, . 2021. Fine extraction of urban villages in provincial capitals based on multivariate data. Remote Sensing for Natural Resources, 33(3): 272-278. doi: 10.6046/zrzyyg.2020368
Citation: FENG Dongdong, ZHANG Zhihua, SHI Haoyue,, . 2021. Fine extraction of urban villages in provincial capitals based on multivariate data. Remote Sensing for Natural Resources, 33(3): 272-278. doi: 10.6046/zrzyyg.2020368

基于多元数据的省会城市城中村精细提取

  • 基金项目:

    国家自然科学基金项目“隧道及其隐伏不良地质体三维多尺度集成建模研究”(41861059)

    兰州交通大学优秀平台项目(201806)

详细信息
    作者简介: 冯东东(1995-),男,硕士研究生,研究方向为影像提取与分析。Email:916678730@qq.com。
  • 中图分类号: TP79

Fine extraction of urban villages in provincial capitals based on multivariate data

  • 城中村是指农村耕地被收走后,剩余宅基地被城市包围的农村聚落。针对当前城中村的研究缺少数据支撑和定量分析等问题,基于高分辨率遥感影像、建筑物轮廓及兴趣点(point of interest,POI)等多元空间数据,以广东省省会广州市的主城区为研究区域,利用ENVI中深度学习工具提取城中村边界,其城中村正确识别率为64.31%。对于提取结果中存在与部分老旧居民区、工业区混淆的现象,进一步使用路网分割高分辨率遥感影像,制作城中村标签数据。结合机器学习分类方法,使用支持向量机分类器提取城中村轮廓。该方法提取的精度可达到90.19%,对于研究区内城中村改造、城市规划设计等具有一定的参考意义。
  • 加载中
  • [1]

    刘辉. 基于高分辨率遥感影像的城中村提取方法研究[D]. 武汉:武汉大学, 2018.

    [2]

    Liu H. Study on extraction method of urban villages based on high-resolution remote sensing image[D]. Wuhan:Wuhan University, 2018.

    [3]

    Boutell M R, Luo J, Brown C M. Scene parsing using region-based generative models[J]. IEEE Transactions on Multimedia, 2007, 9(1):136-146.

    [4]

    尚春艳. 基于高分辨率影像的城中村土地利用变化检测[D]. 西安:长安大学, 2017.

    [5]

    Shang C Y. Detection of land use change in urban villages based on high resolution images:A case study of Chang’an District,Xi’an City[D]. Xi’an:Chang’an University, 2017.

    [6]

    Li Y, Huang X, Liu H. Unsupervised deep feature learning for urban village detection from high-resolution remote sensing images[J]. Photogrammetric Engineering & Remote Sensing Journal of the American Society of Photogrammetry, 2017, 8(13):567-579.

    [7]

    Chen Y B, Chang K T, Han F Z, et al. Investigating urbanization and its spatial determinants in the central districts of Guangzhou,China[J]. Habitat International, 2016, 51:59-69.

    [8]

    周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.

    [9]

    Zhou Z H. Machine learning[M]. Beijing: Tsinghua University Press, 2016.

    [10]

    崔珂玮, 张亚豪, 刘彤, 等. 基于ENVI深度学习模型的卫星影像识别方法研究[J]. 现代信息科技, 2020, 4(1):57-59.

    [11]

    Cui K W, Zhang Y H, Liu T, et al. Research on satellite image recognition method based on ENVI deep learning model[J]. Modern Information Technology, 2020, 4(1):57-59.

    [12]

    黄亮, 左小清, 冯冲, 等. 基于Canny算法的面向对象影像分割[J]. 国土资源遥感, 2011, 23(4):26-30.doi: 10.6046/gtzyyg.2011.04.05.

    [13]

    Huang L, Zuo X Q, Feng C, et al. Object-oriented image segmentation based on Canny algorithm[J]. Remote Sensing for Land and Resources, 2011, 23(4):26-30.doi: 10.6046/gtzyyg.2011.04.05.

    [14]

    高扬. 基于卷积神经网络的高分辨率遥感影像建筑物提取[D]. 南京:南京大学, 2018.

    [15]

    Gao Y. Building extraction of high-resolution remote sensing image based on convolutional neural network[D]. Nanjing:Nanjing University, 2018.

    [16]

    Cui C H, Han Z G. Spatial patterns of retail stores using POIs data in Zhengzhou,China[C]// 2015 2nd IEEE International Conference on Spatial Data Mining and Geographical Knowledge Services(ICSDM).IEEE, 2015:88-92.

    [17]

    Liu J, Deng Y, Wang Y, et al. Urban nighttime leisure space mapping with nighttime light images and POI data[J]. Remote Sensing, 2020, 12(3):541.

    [18]

    禹文豪, 艾廷华. 核密度估计法支持下的网络空间POI点可视化与分析[J]. 测绘学报, 2015(1):82-90.

    [19]

    Yu W H, Ai T H. The visualization and analysis of POI features under network space supported by kernel density estimation[J]. Journal of Surveying and Mapping, 2015(1):82-90.

    [20]

    Maulik U, Chakraborty D. Remote sensing image classification:A survey of support-vector-machine-based advanced techniques[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5(1):33-52.

    [21]

    Patra S, Bruzzone L. A novel SOM-SVM-based active learning technique for remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11):6899-6910.

    [22]

    陈昂, 杨秀春, 徐斌, 等. 基于面向对象与深度学习的榆树疏林识别方法研究[J]. 地球信息科学学报, 2020, 22(9):1897-1909.

    [23]

    Chen A, Yang X C, Xu B, et al. Study on drought and flood evolution in Guangxi based on TRMM data and SPI drought index[J]. Journal of Geo-Information Science, 2020, 22(9):1897-1909.

    [24]

    陈良浩, 朱彩英, 郭连惠, 等. 基于DSM点云纠正的正射影像房屋边缘锯齿消除[J]. 测绘科学技术学报, 2017, 34(3):279-282.

    [25]

    Chen L H, Zhu C Y, Guo L H, et al. Removing aliasing effects of house edge in DOM based on the correction of DSM[J]. Journal of Geomatics Science and Technology, 2017, 34(3):279-282.

    [26]

    刘文雅, 岳安志, 季珏, 等. 基于DeepLabv3+语义分割模型的GF-2影像城市绿地提取[J]. 国土资源遥感, 2020, 32(2):120-129.doi: 10.6046/gtzyyg.2020.02.16.

    [27]

    Liu W Y, Yue A Z, Ji J, et al. Urban green space extraction from GF-2 remote sensing image based on DeepLabv3+semantic segmentation model[J]. Remote Sensing for Land and Resources, 2020, 32(2):120-129.doi: 10.6046/gtzyyg.2020.02.16.

    [28]

    罗仙仙, 曾蔚, 陈小瑜, 等. 深度学习方法用于遥感图像处理的研究进展[J]. 泉州师范学院学报, 2017, 35(6):35-41.

    [29]

    Luo X X, Zeng W, Chen X Y, et al. Research progress of deep learning method used to remote sensing image processing[J]. Journal of Quanzhou Normal University, 2017, 35(6):35-41.

    [30]

    Tastan E, Sozen T. Oblique split technique in septal reconstruction[J]. Facial Plastic Surgery, 2013, 29(6):487-491.

    [31]

    Abdiansah A, Wardoyo R. Time complexity analysis of support vector machines(SVM) in LIBSVM[J]. International Journal Computer and Application, 2015, 128(3):28-34.

    [32]

    刘伟. 基于无人机多光谱遥感影像的地物分类方法研究[D]. 石河子:石河子大学, 2017.

    [33]

    Liu W. Study of object classification based on multispectral images of UAV[D]. Shihezi:Shihezi University, 2017.

    [34]

    胡蕾, 侯鹏洋. 一种基于光谱与纹理特征的多光谱遥感图像地物分类方法[J]. 中国科技论文, 2015, 10(2):197-200.

    [35]

    Hu L, Hou P Y. A multi-spectral remote sensing image feature classification method based on spectrum and texture features[J]. Chinese Science and Technology Paper, 2015, 10(2):197-200.

  • 加载中
计量
  • 文章访问数:  1138
  • PDF下载数:  90
  • 施引文献:  0
出版历程
收稿日期:  2020-11-23
刊出日期:  2021-09-15

目录