中国自然资源航空物探遥感中心主办
地质出版社出版

多尺度特征增强的遥感图像舰船目标检测

刘万军, 高健康, 曲海成, 姜文涛. 2021. 多尺度特征增强的遥感图像舰船目标检测. 自然资源遥感, 33(3): 97-106. doi: 10.6046/zrzyyg.2020372
引用本文: 刘万军, 高健康, 曲海成, 姜文涛. 2021. 多尺度特征增强的遥感图像舰船目标检测. 自然资源遥感, 33(3): 97-106. doi: 10.6046/zrzyyg.2020372
LIU Wanjun, GAO Jiankang, QU Haicheng, JIANG Wentao. 2021. Ship detection based on multi-scale feature enhancement of remote sensing images. Remote Sensing for Natural Resources, 33(3): 97-106. doi: 10.6046/zrzyyg.2020372
Citation: LIU Wanjun, GAO Jiankang, QU Haicheng, JIANG Wentao. 2021. Ship detection based on multi-scale feature enhancement of remote sensing images. Remote Sensing for Natural Resources, 33(3): 97-106. doi: 10.6046/zrzyyg.2020372

多尺度特征增强的遥感图像舰船目标检测

  • 基金项目:

    国家自然科学基金青年基金项目“面向宽幅高光谱遥感影像的高效压缩方法研究”(41701479)

    辽宁工程技术大学学科创新团队资助项目“智慧农业遥感监测创新团队”(LNTU20TD-23)

详细信息
    作者简介: 刘万军(1959-),男,教授,主要研究方向为数字图像处理、运动目标检测与跟踪。Email:liuwanjun@lntu.edu.cn。
  • 中图分类号: TP751.1

Ship detection based on multi-scale feature enhancement of remote sensing images

  • 针对背景复杂的遥感图像中,舰船方向任意、密集排列造成的漏检问题,基于旋转区域检测网络,提出多尺度特征增强的遥感图像舰船目标检测算法。在特征提取阶段,利用密集连接感受野模块改进特征金字塔网络,选用不同空洞率的卷积获取多尺度感受野特征,增强高层语义信息的表达; 为了抑制噪声并突出目标特征,在特征提取后设计基于注意力机制的特征融合结构,根据各层在空间上的权重值融合所有层,得到兼顾语义信息和位置信息的特征层,再对该层特征进行注意力增强,将增强后的特征融入原金字塔特征层; 在分类和回归损失基础上,增加注意力损失,优化注意力网络,给予目标位置更多关注。在DOTA遥感数据集上的实验结果表明,该算法平均检测精度可以达到71.61%,优于最新的遥感图像舰船目标检测算法,有效地解决了目标漏检问题。
  • 加载中
  • [1]

    王彦情, 马雷, 田原. 光学遥感图像舰船目标检测与识别综述[J]. 自动化学报, 2011, 37(9):1029-1039.

    [2]

    Wang Y Q, Ma L, Tian Y. Overview of ship target detection and recognition based on optical remote sensing image[J]. Acta Automatica Sinica, 2011, 37(9):1029-1039.

    [3]

    谢奇芳, 姚国清, 张猛. 基于Faster R-CNN的高分辨率图像目标检测技术[J]. 国土资源遥感, 2019, 31(2):38-43.doi: 10.6046/gtzyyg.2019.02.06.

    [4]

    Xie Q F, Yao G Q, Zhang M. Research on high resolution image object detection technology based on Faster R-CNN[J]. Remote Sensing for Land and Resources, 2019, 31(2):38-43.doi: 10.6046/gtzyyg.2019.02.06.

    [5]

    史文旭, 江金洪, 鲍胜利. 基于特征融合的遥感图像舰船目标检测方法[J]. 光子学报, 2020, 49(7):57-67.

    [6]

    Shi W X, Jiang J H, Bao S L. Ship target detection in remote sensing image based on feature fusion[J]. Acta Photonica Sinica, 2020, 49(7):57-67.

    [7]

    Szegedy C, et al. Going deeper with convolutions[C]// IEEE Conference on Computer Vision and Pattern Recognition(CVPR),Boston,MA, 2015:1-9.

    [8]

    Redmon J, Divvala S, Girshick R, et al. You only look once:Unified,real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),Las Vegas,NV, 2016:779-788.

    [9]

    Liu W, Anguelov D, Erhan D, et al. Ssd:Single shot multibox detector[C]// European Conference on Computer Vision,Springer,Cham, 2016:21-37.

    [10]

    Ren S, He K, Girshick R, et al. Faster R-CNN:Towards real-time object detection with region proposal networks[C]// Advances in neural information processing systems, 2015:91-99.

    [11]

    Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017:2117-2125.

    [12]

    He K, Gkioxari G, Dollár P, et al. Mask R-CNN[C]// Proceedings of the IEEE International Conference on Computer Vision, 2017:2961-2969.

    [13]

    Ma J. Arbitrary-oriented scene text detection via rotation proposals[J]. IEEE Transactions on Multimedia, 2018, 20(11):3111-3122.

    [14]

    Yang X, Sun H, Fu K, et al. Automatic ship detection in remote sensing images from google earth of complex scenes based on multiscale rotation dense feature pyramid networks[J]. Remote Sensing, 2018, 10(1):132.

    [15]

    Zhu Y, Mu J, Pu H, et al. FRFB:Integrate receptive field block into feature fusion net for single shot multibox detector[C]// 2018 14th International Conference on Semantics,Knowledge and Grids(SKG),Guangzhou,China, 2018:173-180.

    [16]

    Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),Las Vegas,NV, 2016:2818-2826.

    [17]

    Huang G, Liu Z, Der Maaten L V, et al. Densely connected convolutional networks[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR),Honolulu,HI, 2017:2261-2269.

    [18]

    Pang J, Chen K, Shi J, et al. Libra R-CNN:Towards balanced learning for object detection[C]// Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),Long Beach,CA,USA, 2019:821-830.

    [19]

    Wang X, Girshick R, Gupta A, et al. Non-local neural networks[C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,Salt Lake City,UT, 2018:7794-7803.

    [20]

    Woo S, Park J, Lee J Y, et al. CBAM:Convolutional block attention module[J]. Lecture Notes in Computer Science, 2018:3-19.

    [21]

    Hu J, Shen J, Sun G. Squeeze-and-excitation networks[C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,Salt Lake City,UT, 2018:7132-7141.

    [22]

    Han J, Zhou P, Zhang D, et al. Efficient,simultaneous detection of multi-class geospatial targets based on visual saliency modeling and discriminative learning of sparse coding[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2014, 89:37-48.

    [23]

    Xia G, et al. 2018. DOTA:A large-scale dataset for object detection in aerial images[C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,Salt Lake City,UT, 2018:3974-3983.

    [24]

    Li Y, Huang Q, Pei X, et al. RADet:Refine feature pyramid network and multi-layer attention network for arbitrary-oriented object detection of remote sensing images[J]. Remote Sensing, 2020, 12(3):389.

  • 加载中
计量
  • 文章访问数:  652
  • PDF下载数:  88
  • 施引文献:  0
出版历程
收稿日期:  2020-11-23
刊出日期:  2021-09-15

目录