中国自然资源航空物探遥感中心主办
地质出版社出版

浮岛光伏电场对地表温度空间分布特征的影响

伯英杰, 曾业隆, 李国庆, 曹兴文, 姚清秀. 2022. 浮岛光伏电场对地表温度空间分布特征的影响. 自然资源遥感, 34(1): 158-168. doi: 10.6046/zrzyyg.2020376
引用本文: 伯英杰, 曾业隆, 李国庆, 曹兴文, 姚清秀. 2022. 浮岛光伏电场对地表温度空间分布特征的影响. 自然资源遥感, 34(1): 158-168. doi: 10.6046/zrzyyg.2020376
BO Yingjie, ZENG Yelong, LI Guoqing, CAO Xingwen, YAO Qingxiu. 2022. Impacts of floating solar parks on spatial pattern of land surface temperature. Remote Sensing for Natural Resources, 34(1): 158-168. doi: 10.6046/zrzyyg.2020376
Citation: BO Yingjie, ZENG Yelong, LI Guoqing, CAO Xingwen, YAO Qingxiu. 2022. Impacts of floating solar parks on spatial pattern of land surface temperature. Remote Sensing for Natural Resources, 34(1): 158-168. doi: 10.6046/zrzyyg.2020376

浮岛光伏电场对地表温度空间分布特征的影响

  • 基金项目:

    国家自然科学基金青年基金项目“风电场对不同草地类型地表温度和蒸散发的影响研究“(41601598)

    山东省高等学校大学生创新创业训练计划项目“浮岛光伏电场对地表温度的影响研究“(S201910451159)

详细信息
    作者简介: 伯英杰(1997-),女,硕士,主要从事遥感应用研究。Email: yingjiebo@foxmail.com
  • 中图分类号: TP79

Impacts of floating solar parks on spatial pattern of land surface temperature

  • 近些年我国光伏产业发展迅速,评估大型光伏电场对环境的影响对指导光伏产业的健康发展具有重要意义。光伏电场对局地热环境的改变开始得到了国内外研究人员的关注。浮岛(也称水面漂浮式)光伏电场作为近年来光伏发电的新开发模式,其对地表温度(land surface temperature, LST)空间分布特征的影响尚不清晰。该文基于Landsat8时间序列遥感数据,利用单通道算法提取了安徽省淮南市典型浮岛光伏电场及其邻近区域的LST数据集,通过构建逐月LST与对应月份的气温之差(LSTs-a)判断光伏电场对LST空间分布特征的影响模式、影响范围和季节差异进行了分析,并明确了建设区不同建设阶段对LST的影响程度。结果表明: ①浮岛光伏电场的建设明显改变了建设区的热环境,在温度变化最明显的夏季和冬季都存在增温效应,增温效应主要集中在建设区200 m范围内,对其周围典型地类的增温效应非常微弱。②浮岛光伏电场建设阶段和建成阶段,建设区的月均LST普遍高于水体,接近于林地的LST; 2个阶段的年均增温幅度分别为3.26 ℃和4.50 ℃。③该研究可为光伏电场对局地环境影响评价的相关研究提供借鉴,并建议从无云时间序列LST构建,光伏电场增/降温幅度的分离,不同下垫面光伏电场对邻域LST空间分布特征的影响范围、程度与归因分析等方面进行深入研究。
  • 加载中
  • [1]

    Parida B, Iniyan S, Goic R. A review of solar photovoltaic technologies[J]. Renewable and Sustainable Energy Reviews, 2011, 15(3):1625-1636. [2] International Energy Agency. Global gaps in clean energy Rd and D:Update and recommendations[M]. Paris:International Energy Agency, 2010:1-35.[3] Itrpv I. International technology roadmap for photovoltaic results 2017[M]. Frankfurt:VDMA Photovoltaic Equipment, 2020:1-72.[4] Schmela M, Masson G, Mai N N T.Global market outlook for solar power 2016—2020[M]. Belgium:Solar Power Europe, 2016:1-38.[5] International Energy Agency. Renewables 2019[M]. Paris:International Energy Agency, 2019:1-106.[6] Li L, Chi T, Zhang M, et al. Multi-layered capital subsidy policy for the Pv industry in China considering regional differences[J]. Sustainability, 2016, 8:45. [7] 朱向东, 贺灿飞, 毛熙彦, 等. 贸易保护背景下中国光伏产业空间格局及其影响因素[J]. 经济地理, 2018, 38(3):98-105.[7] Zhu X D, He C F, Mao X Y, et al. The spatial pattern of China Pv industry under the background of trade protectionism[J]. Economic Geography, 2018, 38(3):98-105.[8] Shuang L, Weigand J, Ganguly S. The potential for climate impacts from widespread deployment of utility-scale solar energy installations:An environmental remote sensing perspective[J]. Journal of Remote Sensing and GIS, 2017, 6(1):1000190.[9] 王祯仪, 汪季, 高永, 等. 光伏电站建设对沙区生态环境的影响[J]. 水土保持通报, 2019, 39(1):191-196.[9] Wang Z Y, Wang J, Gao Y, et al. Impacts of photovoltaic power station construction on ecology environment in sandy area[J]. Bulletin of Soil and Water Conservation, 2019, 39(1):191-196.[10] 吴菲. 光伏发电站环境影响评价技术规范研究[D]. 南京:南京信息工程大学, 2012.[10] Wu F. Study on technical specifications for environmental impact assessment of photovoltaic power station[D]. Nanjing:Nanjing University of Information Science and Technology, 2012.[11] 周茂荣, 王喜君. 光伏电站工程对土壤与植被的影响——以甘肃河西走廊荒漠戈壁区为例[J]. 中国水土保持科学, 2019, 17(2):132-138.[11] Zhou M R, Wang X J. Influence of photovoltaic power station engineering on soil and vegetation:Taking the Gobi desert area in the Hexi corridor of Gansu as an example[J]. Science of Soil and Water Conservation, 2019, 17(2):132-138.[12] 郭丹. 光伏发电现状及其环境效应分析[D]. 保定:华北电力大学, 2016.[12] Guo D. Photovoltaic power generation and its environmental effects analysis[D]. Baoding:North China Electric Power University, 2016.[13] 李芬, 杨勇, 赵晋斌, 等. 光伏电站建设运行对气候环境的能量影响[J]. 气象科技进展, 2019, 9(2):71-77.[13] Li F, Yang Y, Zhao J B, et al. Review on energy impact of photovoltaic power station construction and operation on climate and environment[J]. Advances in Meteorological Science and Technology, 2019, 9(2):71-77.[14] Bayrakci M, Choi Y, Brownson J R. Temperature dependent power modeling of photovoltaics[J]. Energy Procedia, 2014, 57:745-754. [15] Pimentel Da Silva G D, Magrini A B, David A C. A multicriteria proposal for large-scale solar photovoltaic impact assessment[J]. Impact Assessment and Project Appraisal, 2019, 38(1):3-15. [16] Wang S M, Luo X B, Peng Y D. Spatial downscaling of MODIS land surface temperature based on geographically weighted autoregressive model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:2532-2546. [17] Liou Y A, Nguyen A K, Li M H. Assessing spatiotemporal eco-environmental vulnerability by Landsat data[J]. Ecological Indicators, 2017, 80:52-65. [18] 李彦甫. 基于高分辨率影像的光伏电场信息提取鲁棒性分析及其热环境效应研究[D]. 兰州:兰州大学, 2016.[18] Li Y F. Robustness of photovoltaic electric field information extraction based on high-resolution image and its thermal environment effect[D]. Lanzhou:Lanzhou University, 2016.[19] 杨丽薇, 高晓清, 吕芳, 等. 光伏电站对格尔木荒漠地区太阳辐射场的影响研究[J]. 太阳能学报, 2015, 36(9):2160-2166.[19] Yang L W, Gao X Q, Lyu F, et al. Study on the impact of large solar farm on radiation field in desert areas of Golmud[J]. Acta Energiae Solaris Sinica, 2015, 36(9):2160-2166.[20] 刘哲, 杨华, 陈星宇, 等. 光伏电场对地表温度的影响分析[J]. 地理空间信息, 2019, 17(10):20-23,10.[20] Liu Z, Yang H, Chen X Y, et al. Impact analysis of solar park on land surface temperature[J]. Geospatial Information, 2019, 17(10):20-23,10.[21] 李国庆, Armstrong Alona, 刘哲.光伏电场对地表温度的影响研究[J]. 太阳能学报, 2020, 41(12):117-123.[21] Li G Q, Armstrong A, Liu Z. Effect of solar power plants on land surface temperature[J]. Acta Energiae Solaris Sinica, 2020, 41(12):117-123.[22] Pouran H M. From collapsed coal mines to floating solar farms,why China’s new power stations matter[J]. Energy Policy, 2018, 123:414-420. [23] Cook M, Schott J R, Mandel J, et al. Development of an operational calibration methodology for the Landsat thermal data archive and initial testing of the atmospheric compensation component of a land surface temperature (LST) product from the archive[J]. Remote Sensing, 2014, 6(11):11244-11266. [24] Jimenez-Munoz J C, Sobrino J A. A generalized single-channel method for retrieving land surface temperature from remote sensing data[J]. Journal of Geophysical Research:Atmospheres, 2003, 108:D22.[25] Jimenez-Munoz J C, Sobrino J A, Skokovic D, et al. Land surface temperature retrieval methods from Landsat8 thermal infrared sensor data[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(10):1840-1843. [26] Eldesoky A H M, Gil J, Pont M B. The suitability of the urban local climate zone classification scheme for surface temperature studies in distinct macroclimate regions[J]. Urban Climate, 2021(37):100823.[27] Wang Y, Ni Z, Hu M, et al. A practical approach of urban green infrastructure planning to mitigate urban overheating:A case study of Guangzhou[J]. Journal of Cleaner Production, 2021(287):124995.[28] Firozjaei M K, Sedighi A, Firozjaei H K, et al. A historical and future impact assessment of mining activities on surface biophysical characteristics change:A remote sensing-based approach[J]. Eco-logical Indicators, 2021(122):107264.[29] Barsi J, Schott J, Palluconi F, et al. Validation of a web-based atmospheric correction tool for single thermal band instruments[M]. SPIE, 2005.[30] Barsi J A, Barker J L, Schott J R. An atmospheric correction parameter calculator for a single thermal band earth-sensing instrument[C]// IEEE International Geoscience and Remote Sensing Symposium, 2003.[31] Sobrino J A, Jimenez-Munoz J C, Soria G, et al. Land surface emissivity retrieval from different VNIR and TIR sensors[J]. IEEE transactions on Geoscience and Remote Sensing, 2008, 46(2):316-327. [32] Vancutsem C, Ceccato P, Dinku T, et al. Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa[J]. Remote Sensing of Environment, 2010, 114(2):449-465. [33] 韩秀珍, 李三妹, 窦芳丽. 气象卫星遥感地表温度推算近地表气温方法研究[J]. 气象学报, 2012, 70(5):1107-1118.[33] Han X Z, Li S M, Dou F L. Study of obtaining high resolution near-surface atmosphere temperature by using the land surface temperature from meteorological satellite data[J]. Acta Meteorologica Sinica, 2012, 70(5):1107-1118.[34] 姚永慧, 张百平, 韩芳. 基于MODIS地表温度的横断山区气温估算及其时空规律分析[J]. 地理学报, 2011, 66(7):917-927.[34] Yao Y H, Zhang B P, Han F. MODIS-based air temperature estimation in the Hengduan Mountains and its spatio-temporal analysis[J]. Acta Geographica Sinica, 2011, 66(7):917-927.[35] Anselin L. Local indicators of spatial association—Lisa[J]. Geographical Analysis, 1995, 27(2):93-115. [36] Kan A K, Li G Q, Yang X, et al. Ecological vulnerability analysis of Tibetan towns with tourism-based economy:A case study of the Bayi District[J]. Journal of Mountain Science, 2018, 15(5):1101-1114. [37] 孟丹, 王明玉, 李小娟, 等. 京沪穗三地近十年夜间热力景观格局演变对比研究[J]. 生态学报, 2013, 33(5):1545-1558.[37] Meng D, Wang M Y, Li X J, et al. The dynamic change of the thermal environment landscape patterns in Beijing,Shanghai and Guangzhou in the recent past decade[J]. Acta Ecologica Sinica, 2013, 33(5):1545-1558. [38] Bartesaghi-Koc C, Osmond P, Peters A. Spatio-temporal patterns in green infrastructure as driver of land surface temperature variability:The case of Sydney[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 83:101903. [39] Fan C, Wang Z. Spatiotemporal characterization of land cover impacts on urban warming:A spatial autocorrelation approach[J]. Remote Sensing, 2020, 12(10):1631. [40] 吴迪, 陈健, 石满, 等. 基于Savitzky-Golay滤波算法的FY-2F地表温度产品时间序列重建[J]. 自然资源遥感, 2019, 31(2):59-65.doi: 10.6046/gtzyyg.2019.02.09. [40] Wu D, Chen J, Shi M, et al. Reconstruction of land surface temperature time-series datasets of FY-2F based on Savitzky-Golay filter[J]. Remote Sensing for Land and Resources, 2019, 31(2):59-65.doi: 10.6046/gtzyyg.2019.02.09. [41] 徐永明, 覃志豪, 沈艳. 长江三角洲地区地表温度年内变化规律与气候因子的关系分析[J]. 自然资源遥感, 2010(1):60-64.doi: 10.6046/gtzyyg.2010.01.10. [41] Xu Y M, Qin Z H, Shen Y. The relationship between inter-annual variations of land surfacetemperature and climate factors in the Yangtze River Delta[J]. Remote Sensing for Land and Resources, 2010, 22(1):60-64.doi: 10.6046/gtzyyg.2010.01.10. [42] Chang R, Shen Y B, Luo Y, et al. Observed surface radiation and temperature impacts from the large-scale deployment of photovoltaics in the Barren area of Gonghe,China[J]. Renewable Energy, 2018, 118:131-137. [43] 殷代英, 马鹿, 屈建军, 等. 大型光伏电站对共和盆地荒漠区微气候的影响[J]. 水土保持通报, 2017, 37(3):15-21.

    [43] Yin D Y, Ma L, Qu J J, et al. Effect of large photovoltaic power station on microclimate of desert region in Gonghe Basin[J]. Bulletin of Soil and Water Conservation, 2017, 37(3):15-21.

  • 加载中
计量
  • 文章访问数:  853
  • PDF下载数:  44
  • 施引文献:  0
出版历程
收稿日期:  2020-12-01
刊出日期:  2022-03-14

目录