中国自然资源航空物探遥感中心主办
地质出版社出版

高分辨率TerraSAR-X时序差分干涉沉降监测及精度验证

于冰, 谭青雪, 刘国祥, 刘福臻, 周志伟, 何智勇. 2021. 高分辨率TerraSAR-X时序差分干涉沉降监测及精度验证. 自然资源遥感, 33(4): 26-33. doi: 10.6046/zrzyyg.2020379
引用本文: 于冰, 谭青雪, 刘国祥, 刘福臻, 周志伟, 何智勇. 2021. 高分辨率TerraSAR-X时序差分干涉沉降监测及精度验证. 自然资源遥感, 33(4): 26-33. doi: 10.6046/zrzyyg.2020379
YU Bing, TAN Qingxue, LIU Guoxiang, LIU Fuzhen, ZHOU Zhiwei, HE Zhiyong, . 2021. Land subsidence monitoring based on differential interferometry using time series of high-resolution TerraSAR-X images and monitoring precision verification. Remote Sensing for Natural Resources, 33(4): 26-33. doi: 10.6046/zrzyyg.2020379
Citation: YU Bing, TAN Qingxue, LIU Guoxiang, LIU Fuzhen, ZHOU Zhiwei, HE Zhiyong, . 2021. Land subsidence monitoring based on differential interferometry using time series of high-resolution TerraSAR-X images and monitoring precision verification. Remote Sensing for Natural Resources, 33(4): 26-33. doi: 10.6046/zrzyyg.2020379

高分辨率TerraSAR-X时序差分干涉沉降监测及精度验证

  • 基金项目:

    国家自然科学基金青年科学基金项目“基于卫星升降轨时序DInSAR的塔里木油田沉降监测及储层状态参数反演”(41801399)

    第65批中国博士后科学基金面上资助项目“我国西北典型特大油田InSAR沉降监测及储层参数反演”(2019M653476)

    四川省科技计划项目“星载多平台升降轨时序差分雷达干涉滑坡三维形变监测及预测”(2018JY0138)

    大地测量与地球动力学国家重点实验室开放基金项目“玛湖特大油田InSAR沉降监测及储存动力学参数反演”(SKLGED2020-5-1-E)

详细信息
    作者简介: 于 冰(1985-),男,博士,副教授,主要研究方向为合成孔径雷达干涉测量与形变监测、高分辨率遥感自然和人文环境监测。Email:rs_insar_bingyu@163.com。
  • 中图分类号: P2

Land subsidence monitoring based on differential interferometry using time series of high-resolution TerraSAR-X images and monitoring precision verification

  • 城市地面沉降属于缓慢性地质灾害,其对社会经济和人类生活具有持续性负面影响,对城市沉降进行广域高效监测具有重要现实意义。选取天津市为研究区域,以2009年4月7日—2010年12月14日获取的34幅高分辨率TerraSAR-X SAR影像为数据源,采用基于相干点目标分析(interferometric point target analysis, IPTA)的时序差分干涉处理方法进行沉降监测,使用精密水准数据进行精度验证,并提出一种基于最小二乘拟合的沉降时间序列验证方法,最后基于验证后的结果进行沉降分析和解释。与水准数据对比表明,IPTA解算沉降速率、时间序列最小二乘拟合沉降速率的均方根误差分别为3.15 mm/a和-3.25 mm/a。对沉降结果进行分析表明,实验区总体沉降呈不均匀性,最大沉降速率为-128.41 mm/a,沉降时空分布与研究区地表覆盖类型及地下水开采相关。
  • 加载中
  • [1]

    Solari L, Ciampalini A, Raspini F, et al. Combined use of C-and X-band SAR data for subsidence monitoring in an urban area[J]. Geosciences, 2017,7(21):1-17.

    [2]

    于冰. 高分辨率相干散射体雷达干涉建模及形变信息提取方法[D]. 成都:西南交通大学, 2015.

    [3]

    Yu B. High resolution coherent scatterer Radar interferometric modeling and deformation information extraction method[D]. Chengdu:Southwest Jiaotong University, 2015.

    [4]

    段晓峰, 许学工, 王若柏. 天津沿海地区地面沉降及其影响因素[J]. 北京大学学报(自然科学版), 2014,50(6):1071-1076.

    [5]

    Duan X F, Xu X G, Wang R B. Land subsidence and its influencing factors in Tianjin coastal area[J]. Journal of Peking University(Natural Science Edition), 2014,50(6):1071-1076.

    [6]

    张洪涛. 城市地质工作——国家经济建设和社会发展的重要支撑(代序)[J]. 地质通报, 2003(8):549-550.

    [7]

    Zhang H T. Urban geological work:An important support for national economic construction and social development[J]. Geological Bulletin, 2003(8):549-550.

    [8]

    曹群, 陈蓓蓓, 宫辉力, 等. 基于SBAS和IPTA技术的京津冀地区地面沉降监测[J]. 南京大学学报(自然科学), 2019,55(3):381-391.

    [9]

    Cao Q, Chen B B, Gong H L, et al. Land subsidence monitoring in Beijing Tianjin Hebei region based on SBAS and IPTA technology[J]. Journal of Nanjing University(Natural Science), 2019,55(3):381-391.

    [10]

    董克刚, 周俊, 于强, 等. 天津市地面沉降的特征及其危害[J]. 地质灾害与环境保护, 2007(1):67-70.

    [11]

    Dong K G, Zhou J, Yu Q, et al. Characteristics and hazards of land subsidence in Tianjin[J]. Geological Hazards and Environmental Protection, 2007(1):67-70.

    [12]

    于海若, 宫辉力, 陈蓓蓓, 等. 京津冀地区地面沉降研究进展与思考[J]. 测绘科学, 2020,45(4):125-133,141.

    [13]

    Yu H R, Gong H L, Chen B B, et al. Land subsidence research progress and thinking in Beijing Tianji Hebei region[J]. Surveying and Mapping Science, 2020,45(4):125-133,141.

    [14]

    袁悦, 贾丽云, 张绪教, 等. 基于SBAS-InSAR技术的海口地区地面沉降监测及机理分析[J]. 地理与地理信息科学, 2020,36(5):56-64.

    [15]

    Yuan Y, Jia L Y, Zhang X J, et al. Land subsidence monitoring and mechanism analysis in Haikou area based on SBAS-InSAR technology[J]. Geography and Geographic Information Science, 2020,36(5):56-64.

    [16]

    廖明生, 卢丽君, 王艳, 等. 基于点目标分析的InSAR技术检测地表微小形变的研究[J]. 城市地质, 2006(2):38-41.

    [17]

    Liao M S, Lu L J, Wang Y, et al. Study on InSAR technology for detecting surface micro deformation based on point target analysis[J]. Urban Geology, 2006(2):38-41.

    [18]

    丁荣荣, 徐佳, 林晓彬, 等. 基于高分辨率TerraSAR-X影像的PSInSAR地表形变监测[J]. 国土资源遥感, 2015,27(4):158-164.doi: 10.6046/gtzyyg.2015.04.24.

    [19]

    Ding R R, Xu J, Lin X B, et al. Surface deformation monitoring by PSInSAR based on high resolution TerraSAR-X image[J]. Remote Sensing of Land and Resources, 2015,27(4):158-164.doi: 10.6046/gtzyyg.2015.04.24.

    [20]

    Caló F, Notti D, Galve J P, et al. DInSAR-based detection of land subsidence and correlation with groundwater depletion in Konya Plain,Turkey[J]. Remote Sensing, 2017,9(1):1-25.

    [21]

    Alam M S, Kumar D, Chatterjee R S, et al. Assessment of land surface subsidence due to underground metal mining using integrated spaceborne repeat-pass differential interferometric synthetic aperture Radar (DInSAR) technique and ground based observations[J]. Journal of the Indian Society of Remote Sensing, 2018,46(10):1569-1580.

    [22]

    Vidal-Páez P, Derauw D, Fernandez-Sarría A, et al. Monitoring of mining subsidence in a sector of central chile through the processing of a time series of Sentinel 1 images using differential interferometry techniques (DInSAR)[J]. Proceedings, 2019,19(1):1-4.

    [23]

    Pawluszek-Filipiak K, Borkowski A. Integration of DInSAR and SBAS techniques to determine mining-related deformations using Sentinel-1 data:The case study of Rydułtowy mine in Poland[J]. Remote Sensing, 2020,12(2):1-23.

    [24]

    常素娟. 天津市公共租赁房住区生态环境设计研究[D]. 天津:河北工业大学, 2015.

    [25]

    Chang S J. Study on ecological environment design of public rental housing in Tianjin[D]. Tianjin:Hebei University of Technology, 2015.

    [26]

    Yi L X, Zhang F, Xu H, et al. Land subsidence in Tianjin,China[J]. Environmental Earth Sciences, 2011,62(6):1151-1161.

    [27]

    刘晓杰, 赵超英, 康亚, 等. 茂县滑坡形变的Sentinel-1数据分析[J]. 测绘科学, 2019,44(4):55-59,71.

    [28]

    Liu X J, Zhao C Y, Kang Y, et al. Sentinel-1 data analysis of landslide deformation in Maoxian County[J]. Surveying and Mapping Science, 2019,44(4):55-59,71.

  • 加载中
计量
  • 文章访问数:  841
  • PDF下载数:  79
  • 施引文献:  0
出版历程
收稿日期:  2020-12-01
刊出日期:  2021-12-15

目录