Land subsidence monitoring based on differential interferometry using time series of high-resolution TerraSAR-X images and monitoring precision verification
-
摘要: 城市地面沉降属于缓慢性地质灾害,其对社会经济和人类生活具有持续性负面影响,对城市沉降进行广域高效监测具有重要现实意义。选取天津市为研究区域,以2009年4月7日—2010年12月14日获取的34幅高分辨率TerraSAR-X SAR影像为数据源,采用基于相干点目标分析(interferometric point target analysis, IPTA)的时序差分干涉处理方法进行沉降监测,使用精密水准数据进行精度验证,并提出一种基于最小二乘拟合的沉降时间序列验证方法,最后基于验证后的结果进行沉降分析和解释。与水准数据对比表明,IPTA解算沉降速率、时间序列最小二乘拟合沉降速率的均方根误差分别为3.15 mm/a和-3.25 mm/a。对沉降结果进行分析表明,实验区总体沉降呈不均匀性,最大沉降速率为-128.41 mm/a,沉降时空分布与研究区地表覆盖类型及地下水开采相关。
-
关键词:
- TerraSAR-X /
- 时序差分干涉 /
- 沉降监测与分析 /
- 精度验证
Abstract: Urban land subsidence is a kind of slowly developing geological disaster and has sustained negative impacts on the social economy and human life. Therefore, it is of great significance to carry out effective and wide-area urban subsidence monitoring. With 34 high-resolution TerraSAR-X SAR images obtained from April 07, 2009 to December 14, 2010 as data sources, the land subsidence in Tianjin City was monitored using the differential interferometry of time series based on interferometric point target analysis (IPTA) in this study. Then the monitoring precision was verified using the precise leveling data, and a verification method of subsidence time series based on least-squares fitting was adopted. Finally, subsidence analysis and interpretation were carried out based on the verification results. Compared to the leveling data, the root mean square errors of the subsidence rates obtained using IPTA and that using the least squares-fitting of time series were 3.15 mm/a and -3.25 mm/a, respectively. According to the analysis of subsidence results, the overall subsidence of the study area is significantly uneven, the maximum subsidence rate is -128.41 mm/a, and the spatial-temporal distribution of the land subsidence correlates highly with surface cover types and groundwater exploitation. -
-
[1] Solari L, Ciampalini A, Raspini F, et al. Combined use of C-and X-band SAR data for subsidence monitoring in an urban area[J]. Geosciences, 2017,7(21):1-17.
[2] 于冰. 高分辨率相干散射体雷达干涉建模及形变信息提取方法[D]. 成都:西南交通大学, 2015.
[3] Yu B. High resolution coherent scatterer Radar interferometric modeling and deformation information extraction method[D]. Chengdu:Southwest Jiaotong University, 2015.
[4] 段晓峰, 许学工, 王若柏. 天津沿海地区地面沉降及其影响因素[J]. 北京大学学报(自然科学版), 2014,50(6):1071-1076.
[5] Duan X F, Xu X G, Wang R B. Land subsidence and its influencing factors in Tianjin coastal area[J]. Journal of Peking University(Natural Science Edition), 2014,50(6):1071-1076.
[6] 张洪涛. 城市地质工作——国家经济建设和社会发展的重要支撑(代序)[J]. 地质通报, 2003(8):549-550.
[7] Zhang H T. Urban geological work:An important support for national economic construction and social development[J]. Geological Bulletin, 2003(8):549-550.
[8] 曹群, 陈蓓蓓, 宫辉力, 等. 基于SBAS和IPTA技术的京津冀地区地面沉降监测[J]. 南京大学学报(自然科学), 2019,55(3):381-391.
[9] Cao Q, Chen B B, Gong H L, et al. Land subsidence monitoring in Beijing Tianjin Hebei region based on SBAS and IPTA technology[J]. Journal of Nanjing University(Natural Science), 2019,55(3):381-391.
[10] 董克刚, 周俊, 于强, 等. 天津市地面沉降的特征及其危害[J]. 地质灾害与环境保护, 2007(1):67-70.
[11] Dong K G, Zhou J, Yu Q, et al. Characteristics and hazards of land subsidence in Tianjin[J]. Geological Hazards and Environmental Protection, 2007(1):67-70.
[12] 于海若, 宫辉力, 陈蓓蓓, 等. 京津冀地区地面沉降研究进展与思考[J]. 测绘科学, 2020,45(4):125-133,141.
[13] Yu H R, Gong H L, Chen B B, et al. Land subsidence research progress and thinking in Beijing Tianji Hebei region[J]. Surveying and Mapping Science, 2020,45(4):125-133,141.
[14] 袁悦, 贾丽云, 张绪教, 等. 基于SBAS-InSAR技术的海口地区地面沉降监测及机理分析[J]. 地理与地理信息科学, 2020,36(5):56-64.
[15] Yuan Y, Jia L Y, Zhang X J, et al. Land subsidence monitoring and mechanism analysis in Haikou area based on SBAS-InSAR technology[J]. Geography and Geographic Information Science, 2020,36(5):56-64.
[16] 廖明生, 卢丽君, 王艳, 等. 基于点目标分析的InSAR技术检测地表微小形变的研究[J]. 城市地质, 2006(2):38-41.
[17] Liao M S, Lu L J, Wang Y, et al. Study on InSAR technology for detecting surface micro deformation based on point target analysis[J]. Urban Geology, 2006(2):38-41.
[18] 丁荣荣, 徐佳, 林晓彬, 等. 基于高分辨率TerraSAR-X影像的PSInSAR地表形变监测[J]. 国土资源遥感, 2015,27(4):158-164.doi: 10.6046/gtzyyg.2015.04.24.
[19] Ding R R, Xu J, Lin X B, et al. Surface deformation monitoring by PSInSAR based on high resolution TerraSAR-X image[J]. Remote Sensing of Land and Resources, 2015,27(4):158-164.doi: 10.6046/gtzyyg.2015.04.24.
[20] Caló F, Notti D, Galve J P, et al. DInSAR-based detection of land subsidence and correlation with groundwater depletion in Konya Plain,Turkey[J]. Remote Sensing, 2017,9(1):1-25.
[21] Alam M S, Kumar D, Chatterjee R S, et al. Assessment of land surface subsidence due to underground metal mining using integrated spaceborne repeat-pass differential interferometric synthetic aperture Radar (DInSAR) technique and ground based observations[J]. Journal of the Indian Society of Remote Sensing, 2018,46(10):1569-1580.
[22] Vidal-Páez P, Derauw D, Fernandez-Sarría A, et al. Monitoring of mining subsidence in a sector of central chile through the processing of a time series of Sentinel 1 images using differential interferometry techniques (DInSAR)[J]. Proceedings, 2019,19(1):1-4.
[23] Pawluszek-Filipiak K, Borkowski A. Integration of DInSAR and SBAS techniques to determine mining-related deformations using Sentinel-1 data:The case study of Rydułtowy mine in Poland[J]. Remote Sensing, 2020,12(2):1-23.
[24] 常素娟. 天津市公共租赁房住区生态环境设计研究[D]. 天津:河北工业大学, 2015.
[25] Chang S J. Study on ecological environment design of public rental housing in Tianjin[D]. Tianjin:Hebei University of Technology, 2015.
[26] Yi L X, Zhang F, Xu H, et al. Land subsidence in Tianjin,China[J]. Environmental Earth Sciences, 2011,62(6):1151-1161.
[27] 刘晓杰, 赵超英, 康亚, 等. 茂县滑坡形变的Sentinel-1数据分析[J]. 测绘科学, 2019,44(4):55-59,71.
[28] Liu X J, Zhao C Y, Kang Y, et al. Sentinel-1 data analysis of landslide deformation in Maoxian County[J]. Surveying and Mapping Science, 2019,44(4):55-59,71.
-
计量
- 文章访问数: 841
- PDF下载数: 79
- 施引文献: 0