中国自然资源航空物探遥感中心主办
地质出版社出版

卫星热红外温度反演钢铁企业炼钢月产量估算模型

李特雅, 宋妍, 于新莉, 周圆锈. 2021. 卫星热红外温度反演钢铁企业炼钢月产量估算模型. 自然资源遥感, 33(4): 121-129. doi: 10.6046/zrzyyg.2020399
引用本文: 李特雅, 宋妍, 于新莉, 周圆锈. 2021. 卫星热红外温度反演钢铁企业炼钢月产量估算模型. 自然资源遥感, 33(4): 121-129. doi: 10.6046/zrzyyg.2020399
LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. 2021. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature. Remote Sensing for Natural Resources, 33(4): 121-129. doi: 10.6046/zrzyyg.2020399
Citation: LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. 2021. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature. Remote Sensing for Natural Resources, 33(4): 121-129. doi: 10.6046/zrzyyg.2020399

卫星热红外温度反演钢铁企业炼钢月产量估算模型

  • 基金项目:

    国防科工局民用“十三五”航天预先研究项目“星载高分辨率红外高光谱相机及应用技术”(D040104)

详细信息
    作者简介: 李特雅(1996-),男,硕士研究生,主要研究方向为热红外遥感应用技术。Email:liteya@cug.edu.cn。
  • 中图分类号: TP79

Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature

  • 钢铁业是国民经济发展中重要组成部分,掌握钢铁企业月产量有利于开展宏观调控及合理分配资源。以钢铁企业的月产量为研究对象,运用景观格局指数的理论和方法,利用卫星热红外遥感数据表面温度反演后的分级结果,结合厂房矢量数据来获取表面温度异常值和热力景观分布参数,以此提出并建立钢铁企业炼钢月产量估算模型。再结合华中和华北两个典型钢铁企业实际月产量数据,根据最小二乘拟合分别求估算模型,模型的决定系数(R2)大于0.9。分析后验差检验结果可知,该估算模型精度等级为二级; 且在95%的置信度下,实际产量值均落在估算值的置信区间内,综合反映本文提出的炼钢月产量估算模型精度较高。
  • 加载中
  • [1]

    Wu Y. The Chinese steel industry:Recent developments and prospects[J]. Resources Policy, 2000,26(3):171-178.

    [2]

    Hua L Z, Zhang X X, Nie Q, et al. The impacts of the expansion of urban impervious surfaces on urban heat islands in a coastal city in China[J]. Sustainability, 2020,12(2):475.

    [3]

    董家集, 任华忠, 郑逸童, 等. 基于多源遥感数据的城市环境宜居性研究——以北京市为例[J]. 国土资源遥感, 2020,32(3):165-172.doi: 10.6046/gtzyyg.2020.03.22.

    [4]

    Dong J J, Ren H Z, Zhen Y T, et al. A study of the livability of urban environment based on multi-source remote sensing data:A case study of Beijing City[J]. Remote Sensing for Land and Resources, 2020,32(3):165-172.doi: 10.6046/gtzyyg.2020.03.22.

    [5]

    Arslan E, Erenoglu R C. Assessment of hotspots using sparse autoencoder in industrial zones[J]. Environmental Monitoring and Assessment, 2019,191(7):453.

    [6]

    李静, 孙强强, 张平, 等. 基于多时相热红外遥感的钢铁企业生产状态辅助监测[J]. 国土资源遥感, 2019,31(1):220-228.doi: 10.6046/gtzyyg.2019.01.29.

    [7]

    Li J, Sun Q Q, Zhang P, et al. A study of auxiliary monitoring in iron and steel plant based on multi-temporal thermal infrared remote sensing[J]. Remote Sensing for Land and Resources, 2019,31(1):220-228.doi: 10.6046/gtzyyg.2019.01.29.

    [8]

    吴未, 许丽萍, 张敏, 等. 不同斑块类型的景观指数粒度效应响应——以无锡市为例[J]. 生态学报, 2016,36(9):2740-2749.

    [9]

    Wu W, Xu L P, Zhang M, et al. Impact of landscape metrics on grain size effect in different types of patches:A case study of Wuxi City[J]. Acta Ecologica Sinica, 2016,36(9):2740-2749.

    [10]

    唐新明, 王鸿燕, 祝小勇. 资源三号卫星测绘技术与应用[J]. 测绘学报, 2017,46(10):1482-1491.

    [11]

    Tang X M, Wang H Y, Zhu X Y, et al. Technology and applications of surveying and mapping for ZY-3 satellites[J]. Acta Geodaetica et Cartographica Sinica, 2017,46(10):1482-1491.

    [12]

    田国良, 柳钦火, 陈良富. 热红外遥感[M]. 北京: 电子工业出版社, 2014.

    [13]

    Tian G L, Liu Q H, Chen L F. Thermal remote sensing[M]. Beijing:Publishing House of Electronics Industry, 2014.

    [14]

    Walker M L, Dovoedo Y H, Chakraborti S, et al. An improved boxplot for univariate data[J]. The American Statistician, 2018,72(4):348-353.

    [15]

    张玉敏. 基于攀钢炼钢厂车间布局视角的SLP优化设计研究[J]. 物流技术, 2013,32(5):418-421,442.

    [16]

    Zhang Y M. An SLP perspective on layout optimization for steel-making workshops of Pangang[J]. Logistics Technology, 2013,32(5):418-421,442.

    [17]

    Sekertekin A, Kutoglu S H, Kaya S. Evaluation of spatio-temporal variability in Land Surface Temperature:A case study of Zonguldak,Turkey[J]. Environmental Monitoring & Assessment, 2016,188(1):1-15.

    [18]

    El-Hattab M, Amany S M, Lamia G E. Monitoring and assessment of urban heat islands over the Southern region of Cairo Governorate,Egypt[J]. The Egyptian Journal of Remote Sensing and Space Science, 2018,21(3):311-323.

    [19]

    Mujabar P S. Spatial-temporal variation of land surface temperature of Jubail Industrial City,Saudi Arabia due to seasonal effect by using Thermal Infrared Remote Sensor (TIRS) satellite data[J]. Journal of African Earth Sciences, 2019,155:54-63.

    [20]

    Nádudvari A, Abramowicz A, Maniscalco R, et al. The estimation of lava fow temperatures using Landsat night-time images:Case studies from eruptions of Mt. Etna and Stromboli (Sicily,Italy),Kīlauea (Hawaii Island),and Eyjafallajökull and Holuhraun (Iceland)[J]. Remote Sensing, 2020,12(16):2537.

    [21]

    李召良, 段四波, 唐伯惠, 等. 热红外地表温度遥感反演方法研究进展[J]. 遥感学报, 2016,20(5):899-920.

    [22]

    Li Z L, Duan S B, Tang B H, et al. Review of methods for land surface temperature derived from thermal infrared remotely sensed data[J]. Journal of Remote Sensing, 2016,20(5):899-920.

    [23]

    王猛猛. 地表温度与近地表气温热红外遥感反演方法研究[D]. 北京:中国科学院大学(中国科学院遥感与数字地球研究所), 2017.

    [24]

    Wang M M. Methodology development for retrieving land surface temperature and near suface air temperature based on thermal infrared Remote Sensing[D]. Beijing:The University of Chinese Academy of Sciences(Institute of Remote Sensing and Digital Earth), 2017.

    [25]

    Dash P, Göttsche F M, Olesen F S, et al. Land surface temperature and emissivity estimation from passive sensor data:Theory and practice-current trends[J]. International Journal of Remote Sensing, 2002,23(13):2563-2594.

    [26]

    Wang Y N, Wei F F, Sun C Q, et al. The research of improved grey GM (1,1) model to predict the postprandial glucose in type 2 diabetes[J]. BioMed Research International, 2016: 6837052.

    [27]

    朱军桃, 李亚威, 熊东旭, 等. 建筑物沉降监测中的改进灰色模型[J]. 测绘科学, 2017,42(11):85-91.

    [28]

    Zhu J T, Li Y W, Xiong D X, et al. An improved grey mode in the building settlement monitoring[J]. Science of Surveying and Mapping, 2017,42(11):85-91.

    [29]

    Tavares M, Cunha A, Motta-marques D, et al. Comparison of methods to estimate lake-surface-water temperature using Landsat7 ETM+ and MODIS imagery:Case study of a large shallow subtropical lake in southern Brazil[J]. Water, 2019,11(1):168.

    [30]

    Wang M M, Zhang Z J, Hu T, et al. A practical single-channel algorithm for land surface temperature retrieval:Application to Landsat series data[J]. Journal of Geophysical Research Atmospheres, 2019,124(1):299-316.

    [31]

    陈瀚阅, 朱利, 李家国, 等. 基于Landsat8数据的2种海表温度反演单窗算法对比——以红沿河核电基地海域为例[J]. 国土资源遥感, 2018,30(1):45-53.doi: 10.6046/gtzyyg.2018.01.07.

    [32]

    Chen H Y, Zhu L, Li J G, et al. A comparison of two mono-window algorithms for retrieving sea surface temperature from Landsat8 data in coastal water of Hongyan River nuclear power station[J]. Remote Sensing for Land and Resources, 2018,30(1):45-53.doi: 10.6046/gtzyyg.2018.01.07.

    [33]

    徐双, 李飞雪, 张卢奔, 等. 长沙市热力景观空间格局演变分析[J]. 生态学报, 2015,35(11):3743-3754.

    [34]

    Xu S, Li F X, Zhang L B, et al. Spatiotemporal changes of thermal environment landscape pattern in Changsha[J]. Acta Ecologica Sinica, 2015,35(11):3743-3754.

    [35]

    Williamson D F, Parker R A, Kendrick J S. The box plot:A simple visual method to interpret data[J]. Annals of Internal Medicine, 1989,110(11):916-921.

    [36]

    潘明慧, 兰思仁, 朱里莹, 等. 景观格局类型对热岛效应的影响——以福州市中心城区为例[J]. 中国环境科学, 2020,40(6):2635-2646.

    [37]

    Pan M H, Lan S R, Zhu L Y, et al. Influence of landscape pattern types on heat island effect over central Fuzhou City[J]. China Environmental Science, 2020,40(6):2635-2646.

    [38]

    陈云浩, 李晓兵, 史培军, 等. 上海城市热环境的空间格局分析[J]. 地理科学, 2002(3):317-323.

    [39]

    Chen Y H, Li X B, Shi P J, et al. Study on spatial pattern of urban heat environment in Shanghai City[J]. Scientia Geographica Sinica, 2002(3):317-323.

    [40]

    梁顺林, 李小文, 王锦地. 定量遥感: 理念与算法[M]. 北京: 科学出版社, 2013: 23.

    [41]

    Liang S L, Li X W, Wang J D. Remote sensing:Concept and algorithm[M]. Beijing: Science Press, 2013: 23.

    [42]

    张仁华, 田静, 李召良, 等. 定量遥感产品真实性检验的基础与方法[J]. 中国科学:地球科学, 2010,40(2):211-222.

    [43]

    Zhang R H, Tian J, Li Z L, et al. Principles and methods for the validation of quantitative remote sensing products[J]. Scientia Sinica(Terrae), 2010,40(2):211-222.

    [44]

    Cheng C T, Luo B, Miao S M, et al. Mid-term electricity market clearing price forecasting with sparse data:A case in newly-reformed Yunnan electricity market[J]. Energies, 2016,9(10):804.

    [45]

    周松林, 茆美琴, 苏建徽. 风电功率短期预测及非参数区间估计[J]. 中国电机工程学报, 2011,31(25):10-16.

    [46]

    Zhou S L, Mao M Q, Su J H. Short-term forecasting of wind power and non-parametric confidence interval estimation[J]. Proceedings of the CSEE, 2011,31(25):10-16.

    [47]

    Lampton M. Damping-undamping strategies for the Levenberg-Marquardt nonlinear least-squares method[J]. Computers in Physics, 1997,11(1):110-115.

    [48]

    Petrá I, Bednárová D. Total least squares approach to modeling:A Matlab toolbox[J]. Acta Montana Slovaca, 2010,15(2):158-170.

  • 加载中
计量
  • 文章访问数:  895
  • PDF下载数:  26
  • 施引文献:  0
出版历程
收稿日期:  2020-12-14
刊出日期:  2021-12-15

目录