中国自然资源航空物探遥感中心主办
地质出版社出版

结合空间约束的卷积神经网络多模型多尺度船企场景识别

于新莉, 宋妍, 杨淼, 黄磊, 张艳杰. 2021. 结合空间约束的卷积神经网络多模型多尺度船企场景识别. 自然资源遥感, 33(4): 72-81. doi: 10.6046/zrzyyg.2021020
引用本文: 于新莉, 宋妍, 杨淼, 黄磊, 张艳杰. 2021. 结合空间约束的卷积神经网络多模型多尺度船企场景识别. 自然资源遥感, 33(4): 72-81. doi: 10.6046/zrzyyg.2021020
YU Xinli, SONG Yan, YANG Miao, HUANG Lei, ZHANG Yanjie. 2021. Multi-model and multi-scale scene recognition of shipbuilding enterprises based on convolutional neural network with spatial constraints. Remote Sensing for Natural Resources, 33(4): 72-81. doi: 10.6046/zrzyyg.2021020
Citation: YU Xinli, SONG Yan, YANG Miao, HUANG Lei, ZHANG Yanjie. 2021. Multi-model and multi-scale scene recognition of shipbuilding enterprises based on convolutional neural network with spatial constraints. Remote Sensing for Natural Resources, 33(4): 72-81. doi: 10.6046/zrzyyg.2021020

结合空间约束的卷积神经网络多模型多尺度船企场景识别

  • 基金项目:

    海洋领域融合应用示范项目(2020010004)

    国防科工局民用“十三五”航天预先研究项目“星载高分辨率红外高光谱相机及应用技术”(D040104)

详细信息
    作者简介: 于新莉(1997-),女,硕士,主要研究方向为深度学习、海岸带多源遥感监测等。Email:yu_xinli@cug.edu.cn。
  • 中图分类号: TP79

Multi-model and multi-scale scene recognition of shipbuilding enterprises based on convolutional neural network with spatial constraints

  • 船企场景识别对修复沿岸生态环境、保护水域环境以及促进船舶产业的协调发展具有现实意义,但传统方法基于中、低层次的特征难以实现卫星遥感图像中船企的自动识别。为此,提出了结合空间约束的卷积神经网络多模型多尺度船企场景识别方法。首先分别采用全局尺度的船企场景和局部尺度船坞(台)、厂房和船只样本训练多个卷积神经网络模型,并进行多模型多尺度检测; 进而对局部对象进行像素级定位并计算对象空间距离; 最终结合多尺度检测结果、对象标签组合方式、对象空间距离进行船企场景综合判别与提取。将此方法分别应用于中国江苏省、日本长崎县和爱媛县周边以及韩国木浦市和巨济市周边5个典型造船密集区。结果表明,江苏省整体识别精确度为87%,召回率为85%; 日本研究区整体识别精确度为91%,召回率为87%; 韩国研究区整体识别精确度为85%,召回率为92%。实验结果表明,此方法可以较好地实现遥感船企复杂场景的识别。
  • 加载中
  • [1]

    杨青. 长三角船舶产业集群研究[D]. 上海:上海海事大学, 2007.

    [2]

    Yang Q. Research on the shipbuilding industry cluster in the Yangtze River delta[D]. Shanghai:Shanghai Maritime University, 2007.

    [3]

    刘辉, 史雅娟, 曾春水. 中国船舶产业空间布局与发展策略[J]. 经济地理, 2017,37(8):99-107.

    [4]

    Liu H, Shi Y J, Zeng C S. Spatial layout and development strategy of the ship-related industry in China[J]. Economic Geography, 2017,37(8):99-107.

    [5]

    Zhou Z H, Zhang M L, Huang S J, et al. Multi-instance and multi-label learning[J]. Artificial Intelligence, 2012,176(1):2291-2320.

    [6]

    Li Z L, Xu K, Xie J F, et al. Deep multiple instance convolutional neural networks for learning robust scene representations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020,58(5):3685-3702.

    [7]

    Liu W H, Li Y D, Wu Q. An attribute-based high-level image representation for scene classification[J]. IEEE Access, 2019,7:4629-4640.

    [8]

    Khan N, Chaudhuri U, Banerjee B, et al. Graph convolutional network for multi-label VHR remote sensing scene recognition[J]. Neurocomputing, 2019,357:36-46.

    [9]

    Chen Z M, Wei X S, Wang P, et al. Multi-Label Image Recognition with Graph Convolutional Networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).IEEE, 2019.

    [10]

    Clement M, Kurtz C, Wendling L. Learning spatial relations and shapes for structural object description and scene recognition[J]. Pattern Recognition, 2018,84:197-210.

    [11]

    Lazebnik S, Schmid C, Ponce J. Beyond bags of features:Spatial pyramid matching for recognizing natural scene categories[C]//Computer Vision and Pattern Recognition,2006 IEEE Computer Society Conference, 2006.

    [12]

    Jiang Y, Yuan J, Gang Y. Randomized spatial partition for scene recognition[M]. Berlin:Springer Berlin Heidelberg, 2012:730-743.

    [13]

    Weng C Q, Wang H X, Yuan J S, et al. Discovering Class-Specific Spatial Layouts for Scene Recognition[J]. IEEE Signal Processing Letters, 2017,24(8):1143-1147.

    [14]

    He K M, Zhang X Y, Ren S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015,37(9):1904-1916.

    [15]

    Xie L, Lee F F, Liu L, et al. Scene recognition:A comprehensive survey[J]. Pattern Recognition, 2020,102:107205.

    [16]

    船舶工业年鉴编委会. 中国船舶工业年鉴2018[Z].[s.l]:船舶工业年鉴编委会, 2018.

    [17]

    Editorial Committee of Yearbook of Shipbuilding Industry. Yearbook of China shipbuilding industry 2018[Z].[s.l]:Editorial Committee of Yearbook of Shipbuilding Industry, 2018.

    [18]

    He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas:2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), 2016:770-778.

    [19]

    颜荔. 基于卷积神经网络的遥感图像飞机目标识别研究[D]. 合肥:中国科学技术大学, 2018.

    [20]

    Yan L. Research on airplane target recognition in remote sensing images based on convolutional neural network[D]. Hefei:University of Science and Technology of China, 2018.

    [21]

    Zhou Z H. A brief introduction to weakly supervised learning[J]. National Science Review, 2018,5(1):44-53.

    [22]

    Selvaraju R R, Cogswell M, Das A, et al. Grad-CAM:Visual explanations from deep networks via gradient-based localization[J]. International Journal of Computer Vision, 2020,128(2):336-359.

    [23]

    Xia G S, Hu J W, Hu F, et al. AID:A benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017,55(7):3965-3981.

    [24]

    Cheng G, Han J W, Lu X Q. Remote sensing image scene classification:Benchmark and state of the art[J]. Proceedings of the IEEE, 2017,105(10):1865-1883.

    [25]

    Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017,60(6):84-90.

    [26]

    Karen S, Andrew Z. Very deep convolutional networks for large-scale image recognition[J]. arXiv, 2014.

  • 加载中
计量
  • 文章访问数:  1045
  • PDF下载数:  38
  • 施引文献:  0
出版历程
收稿日期:  2021-01-15
刊出日期:  2021-12-15

目录