A review of remote sensing inversion methods for estimating soil water content based on hyperspectral characteristics
-
摘要: 在不同时空尺度上快速、准确地估算土壤含水量是水文、环境、地质、农业和气候变化等领域研究的重点内容。目前,如何准确获取土壤含水量仍然是一项具有挑战性的任务,过去传统的基于”点”的土壤取样和分析方法费时费力,利用遥感影像反演土壤含水量具有范围广、时效快、成本低、动态对比性强等优势。其中,在高光谱遥感中土壤含水量与土壤反射率波长范围有关,至今已有多种方法被用来描述土壤含水量与高光谱遥感的关系,综述了现有的基于高光谱反射率估计土壤含水量的方法,并将其分为4大类: 光谱反射率法、函数法、模型法和机器学习法。通过比较分析了不同方法在精度、复杂性、辅助数据要求、不同模式下的可操作性以及对土壤类型的依赖性等方面的潜力和局限性,并对未来土壤含水量-高光谱反射率方面的研究提出了相应建议。Abstract: The rapid and accurate estimation of soil water content at different spatial and temporal scales is key research content in the fields of hydrology, environment, geology, agriculture, and climate change. However, it is still a challenge to obtain accurate soil water content presently. In the past, the traditional point-based soil sampling and analysis methods were time-consuming and laborious. By contrast, retrieving soil water content using remote sensing images has the advantages of a wide range, high timeliness, low cost, and strong dynamic contrast. In hyperspectral remote sensing, soil water content is related to the wavelength range of soil reflectance. So far, many methods have been used to describe the relationships between soil water content and hyperspectral remote sensing. This paper summarized existing methods for estimating soil water content based on hyperspectral reflectance and divided them into four categories: spectral reflectance methods, function methods, model methods, and machine learning methods. Moreover, this paper compared and analyzed the potential and limitations of different methods in terms of accuracy, complexity, auxiliary data requirements, operability under different modes, and the dependence on soil types. Finally, this study put forward corresponding suggestions for future research on the relationships between soil water content and hyperspectral reflectance.
-
Key words:
- hyperspectral /
- diffuse reflectance /
- reflectance /
- soil water content /
- optical remote sensing
-
-
[1] Haubrock S N, Chabrillat S, Lemmnitz C, et al. Surface soil moisture quantification models from reflectance data under field conditions[J]. International Journal of Remote Sensing, 2008, 29(1):3-29. [2] Reynolds S G. The gravimetric method of soil moisture determination Part III:An examination of factors influencing soil moisture variability[J]. Journal of Hydrology, 1970, 3(11):288-300.[3] Ledieu J, Ridder P, Clerck P, et al. A method of measuring soil moisture by time-domain reflectometry[J]. Journal of Hydrology, 1986, 88(3/4):319-328. [4] Chanasyk D S, Naeth M A. Field measurement of soil moisture using neutron probes[J]. Canadian Journal of Soil Science, 1996, 76(3):317-323. [5] Dean T J, Bell J P, Baty J B. Soil moisture measurement by an improved 400 capacitance technique,Part I.Sensor design and performance[J]. Journal of Hydrology, 1987, 401(1-2):67-78.[6] Engman E T. Applications of microwave remote sensing of soil moisture for water resources and agriculture[J]. Remote Sensing of Environment, 1991, 35(2-3):213-226. [7] Qin Y, Liu X N, Jonathan L, et al. Lithology identification of the north Qilian belt by surface temperature and spectral emissivity information derived from ASTER TIR data[J]. International Journal of Remote Sensing Applications, 2013, 3(4):235-239.[8] Wang X, Venugopal G. Optical fiber meta magnetics[J]. Optics Express, 2011, 19(21):19813-19821. [9] Sandholt I, Kjeld R, Jens A. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status[J]. Remote Sensing of Environment, 2002, 79(2):213-224. [10] Lobell D B, Asner G P. View angle effects on canopy reflectance and spectral mixture analysis of coniferous forests using AVIRIS[J]. International Journal of Remote Sensing, 2002, 23(11):2247-2262. [11] Stevens A, Marco N. Prediction of soil organic carbon at the European scale by visible and near infrared reflectance spectroscopy[J]. PLoS ONE, 2013, 8(6):337-347.[12] Dalal R C, Mayer R J. Long term trends in fertility of soils under continuous cultivation and cereal cropping in southern Queensland.II.Total organic carbon and its rate of loss from the soil profile[J]. Soil Research, 1986, 24(2):281-292. [13] 刘伟东, Baret F, 张兵, 等. 应用高光谱遥感数据估算土壤表层水分的研究[J]. 遥感学报, 2004, 8(5):434-442.[13] Liu W D, Barnet F, Zhang B, et al. Study on the estimation of soil surface water by hyperspectral remote sensing data[J]. Journal of Remote Sensing, 2004, 8(5):434-442.[14] Haubrock S N, Chabrillat S. Surface soil moisture quantification models from reflectance data under field conditions[J]. International Journal of Remote Sensing, 2008, 29(1):3-29. [15] 刘伟东. 高光谱遥感土壤信息提取与挖掘研究[D]. 北京: 中国科学院研究生院(遥感应用研究所), 2002.[15] Liu W D. Extraction and mining of soil information from hyperspectral remote sensing[D]. Beijing: Graduate School of Chinese Academy of Sciences, 2002.[16] Etienne M, Henri D. Modeling soil moisture-reflectance[J]. Remote Sensing of Environment, 2001, 76(2):173-180. [17] Bob S B, Raphael A, Viscarra R, et al. Visible and near infrared spectroscopy in soil science[J]. Advances in Agronomy, 2010, 107:163-215.[18] Sarathjith M C, Bhabani S D, et al. Diffuse reflectance spectroscopic approach for the characterization of soil aggregate size distribution[J]. Soil Science Society of America Journal, 2014, 78(2):369-376. [19] Tian J, Philpot W D. Relationship between surface soil water content,evaporation rate,and water absorption band depths in SWIR reflectance spectra[J]. Remote Sensing of Environment, 2015, 169:280-289. [20] Bablet A, Vu P V, Jacquemoud S, et al. MARMIT:A multilayer radiative transfer model of soil reflectance to estimate surface soil moisture content in the solar domain (400-2 500 nm)[J]. Remote Sensing of Environment, 2018, 217:1-17. [21] Gao C, Xu M, Xu H Z Y, et al. Retrieving photometric properties and soil moisture content of tidal flats using bidirectional spectral reflectance[J]. Remote Sensing, 2021, 13(7):1402. [22] 刘伟东, Baret F, 张兵, 等. 高光谱遥感土壤湿度信息提取研究[J]. 土壤学报, 2004, 5:700-706.[22] Liu W D, Baret F, Zhang B, et al. Extraction of soil moisture information from hyperspectral remote sensing[J]. Acta Pedologica Sinica, 2004, 5:700-706.[23] Tian J, Yue J B, Philpot W D, et al. Soil moisture content estimate with drying process segmentation using shortwave infrared bands[J]. Remote Sensing of Environment, 2021, 263:112552. [24] Yue J B, Tian J, Qing J T, et al. Development of soil moisture indices from differences in water absorption between shortwave-infrared bands[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 154:216-230. [25] Fabre S, Xavier B. Estimation of soil moisture content from the spectral reflectance of bare soils in the 0.4-2.5 mm domain[J]. Sensors, 2015, 15:3262-3281. [26] Lobell D B, Gregory P A. Moisture effects on soil reflectance[J]. Soil Science Society of America Journal, 2002, 66(3):722. [27] van Genuchten M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5):892-898. [28] Nolet C, Ate P, Peter R, et al. Measuring and modeling the effect of surface moisture on the spectral reflectance of coastal beach sand[J]. PLoS ONE, 2014, 9(11):112-151.[29] Whiting M L, Lin L, Susan L U. Predicting water content using Gaussian model on soil spectra[J]. Remote Sensing of Environment, 2004, 89:535-552. [30] Philpot W D. Spectral reflectance of wetted soils[C]// Proceedings of Art,Science and Applications of Reflectance Spectroscopy (ASARS), 2010:1-12.[31] Segelstein D J. The complex refractive index of water[D]. Kansas: University of Missouri, 1981.[32] Kou L H, Daniel L, Petry C R. Indices of water and ice in the 0.65 to 2.5 mm spectral range[J]. Applied Optics, 1993, 32(19):3531-3540. [33] Nolet C, Poortinga A, Roosjen P, et al. Measuring and modeling the effect of surface moisture on the spectral reflectance of coastal beach sand[J]. PLoS ONE, 2014, 9(11):112-151.[34] Sadeghi M, Jones S B, Philpot W D. A linear physically-based model for remote sensing of soil moisture using short wave infrared bands[J]. Remote Sensing of Environment, 2015, 164:66-76. [35] Dalal R C, Henry R J. Simultaneous determination of moisture,organic carbon, and total nitrogen by near infrared reflectance spectrophotometry[J]. Soil Science Society of America Journal, 1986, 50(1):120-123. [36] 王涛, 喻彩丽, 姚娜, 等. MLR和PLSR的沙壤土盐分含量光谱检测对比研究[J]. 干旱区地理, 2018, 41(6):1295-1302.[36] Wang T, Yu C L, Yao N, et al. Comparative study on spectral detection of salt content in sandy loam soil by MLR and PLSR[J]. Arid Land Geography, 2018, 41(6):1295-1302.[37] Chang C W, David H. Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties[J]. Soil Science Society of America Journal, 2001, 65(2):480-490. [38] 申艳, 张晓平, 梁爱珍, 等. 近红外光谱法在土壤有机质研究中的应用[J]. 核农学报, 2010, 24(1):199-207.[38] Shen Y, Zhang X P, Liang A Z, et al. Application of near infrared spectroscopy in soil organic matter research[J]. Acta Nucifera Sinica, 2010, 24(1):199-207.[39] 李晓明. 基于PLSR的土壤水分光谱特征研究[J]. 西部大开发(土地开发工程研究), 2017, 2(9):49-54.[39] Li X M. Spectral characteristics of soil moisture based on PLSR[J]. Western Development (Land Development Engineering), 2017, 2(9):49-54.[40] Svante W, Michael S, Lennart E. PLS-regression:A basic tool of chemometrics[J]. Chemometrics and Intelligent Laboratory Systems, 2001, 58(2):109-130. [41] Mouazen A M, Karoui R. Potential of visible and near-infrared spectroscopy to derive colour groups utilising the munsell soil colour charts[J]. Biosystems Engineering, 2007, 97(2):131-141. [42] Nawar S, Mouazen A M. Comparison between random forests,artificial neural networks and gradient boosted machines methods of on-line VIS-NIR spectroscopy measurements of soil total nitrogen and total carbon[J]. Sensors, 2017, 17(10):2428. [43] 尚天浩, 贾萍萍, 孙媛, 等. 宁夏银北地区盐碱化土壤水分光谱特征及模型拟合精度分析[J]. 水土保持通报, 2020, 40(4):183-189.[43] Shang T H, Jia P P, Sun Y, et al. Spectral characteristics and model fitting accuracy of saline alkali soil water in Yinbei area of Ningxia[J]. Bulletin of Soil and Water Conservation, 2020, 40(4):183-189.[44] 吴士文, 王昌昆, 刘娅, 等. 高光谱成像的土壤剖面水分含量反演及制图[J]. 光谱学与光谱分析, 2019, 39(9):2847-2854.[44] Wu S W, Wang C K, Liu Y, et al. Retrieval and mapping of soil moisture content in hyperspectral imaging[J]. Spectroscopy and Spectral Analysis, 2019, 39(9):2847-2854.[45] Leila H E, Alfonso T R. Assessment of surface soil moisture using high-resolution multi-spectral imagery and artificial neural networks[J]. Remote Sensing, 2015, 7(3):2627-2646. [46] Vapnik V, Chapelle O. Bounds on error expectation for support vector machines[J]. Neural Computation, 2000, 12(9):2013-2036. [47] 贾学勤, 冯美臣, 杨武德, 等. 基于SPA-MLR方法的土壤含水量光谱预测模型研究[J]. 干旱地区农业研究, 2018, 36(3):266-269,291.[47] Jia X Q, Feng M C, Yang W D, et al. Study on spectral prediction model of soil water content based on SPA-MLR method[J]. Agricultural Research in Arid Areas, 2018, 36(3):266-269,291.[48] Friedman J H. Multivariate adaptive regression splines[J]. The Annals of Statistics, 1991, 19(1):1-67.[49] Kurkova; V. Kolmogorov's theorem and multilayer neural networks[J]. Neural Networks, 1992, 5(3):501-506. [50] Sarathjith M C, Bhabani S D, Hitesh B V, et al. Diffuse reflectance spectroscopic approach for the characterization of soil aggregate size distribution[J]. Soil Science Society of America Journal, 2014, 78(2):369-376. [51] 翁永玲, 戚浩平, 方洪宾, 等. 基PLSR方法的青海茶卡—共和盆地土壤盐分高光谱遥感反演[J]. 土壤学报, 2010, 47(6):1255-1263.[51] Weng Y L, Qi H P, Fang H B, et al. Hyperspectral remote sensing inversion of soil salinity in Chaka Gonghe basin of Qinghai Province based on PLSR method[J]. Acta Pedologica Sinica, 2010, 47(6):1255-1263.[52] 朱亚星, 周桢津, 洪永胜, 等. 耦合高光谱数据估算土壤含水率的方法[J]. 华中师范大学学报(自然科学版), 2017, 51(1):123-129.[52] Zhu Y X, Zhou Z J, Hong Y S, et al. Method for estimating soil moisture content by coupling hyperspectral data[J]. Journal of Central China Normal University (Natural Science Edition), 2017, 51(1):123-129.[53] Kaingo J, Nganga I K. Prediction of soil moisture-holding capacity with support vector machines in dry subhumid tropics[J]. Applied and Environmental Soil Science, 2018:1-10.[54] Balabin R M, Ekaterina I L. Support vector machine regression (SVR/LS-SVM)-an alternative to neural networks (ANN) for analytical chemistry ? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data[J]. Analyst, 2011, 136:1703-1712. [55] Thissen U, Bulent U, Willem J M, et al. Multivariate calibration with least-squares support vector machines[J]. Analytical Chemistry, 2004, 76(11):3099-3105. [56] Nawar S, Abdul M M. Predictive performance of mobile VIS-NIR infrared spectroscopy for key soil properties at different geographical scales by using spiking and data mining techniques[J]. Catena, 2017, 151:118-129. [57] 胡振琪, 张学礼. 基于ANN的复垦土壤水分特征曲线的预测研究[J]. 农业工程学报, 2008(10):15-19.
[57] Hu Z Q, Zhang X L. Prediction of reclaimed soil water characteristic curve based on ANN[J]. Journal of Agricultural Engineering, 2008(10):15-19.
-
计量
- 文章访问数: 2417
- PDF下载数: 203
- 施引文献: 0