中国自然资源航空物探遥感中心主办
地质出版社出版

基于遥感的唐山市绿色空间演化及对热岛效应的影响

王驷鹞, 赵春雷, 陈霞, 刘丹. 2022. 基于遥感的唐山市绿色空间演化及对热岛效应的影响. 自然资源遥感, 34(2): 168-175. doi: 10.6046/zrzyyg.2021198
引用本文: 王驷鹞, 赵春雷, 陈霞, 刘丹. 2022. 基于遥感的唐山市绿色空间演化及对热岛效应的影响. 自然资源遥感, 34(2): 168-175. doi: 10.6046/zrzyyg.2021198
WANG Siyao, ZHAO Chunlei, CHEN Xia, LIU Dan. 2022. Remote sensing-based green space evolution in Tangshan and its influence on heat island effect. Remote Sensing for Natural Resources, 34(2): 168-175. doi: 10.6046/zrzyyg.2021198
Citation: WANG Siyao, ZHAO Chunlei, CHEN Xia, LIU Dan. 2022. Remote sensing-based green space evolution in Tangshan and its influence on heat island effect. Remote Sensing for Natural Resources, 34(2): 168-175. doi: 10.6046/zrzyyg.2021198

基于遥感的唐山市绿色空间演化及对热岛效应的影响

  • 基金项目:

    河北省创新能力提升计划项目”冬奥赛区雪道表层冻融过程研究”(19245419D)

详细信息
    作者简介: 王驷鹞(1987-),男,硕士,工程师,研究方向为生态环境遥感。Email: henson1011@126.com
  • 中图分类号: TP79

Remote sensing-based green space evolution in Tangshan and its influence on heat island effect

  • 城市环境问题是当今世界面临的重要问题,城市热岛问题是其中重要研究方向之一,伴随着城市扩张、人口增加,城市热岛效应也发生着显著的变化。以Landsat系列卫星资料为数据源,河北省唐山市中心城区为主要研究区,利用辐射传输方程、监督分类、重心迁移、随机采样等方法,分析绿色空间演化对城市温度变化的影响。研究结果表明: ①研究时段内,热岛发展方向和面积与城市快速发展的规模和方向较为一致,冷热岛重心的迁移方向和绿色空间、城镇重心迁移方向相类似,冷岛重心迁移距离要大于热岛重心; ②城市绿色空间持续损失,其中农业用地损失面积最大,为55.79 km2,城镇用地增加面积最大,为47.85 km2; ③在不同时期,冷热岛演化的趋势与绿色空间演化趋势不一致,这或许与绿色空间存量有一定关系; ④绿色空间扩张对于城市地表降温的作用(-0.16 ℃)远小于绿色空间损失造成的地表升温作用(6.37 ℃)。研究结果能给城市规划提供参考,合理布局绿色空间,保留足够的绿色空间存量,有效降低城市热岛效应的发展速度。
  • 加载中
  • [1]

    潘莹, 崔林林, 刘昌脉, 等. 基于MODIS数据的重庆市城市热岛效应时空分析[J]. 生态学杂志, 2018, 37(12):3736-3745.[1] Pan Y, Cui L L, Liu C M, et al. Spatiotemporal distribution of urban heat island effect based on MODIS data in Chongqing,China[J]. Chinese Journal of Ecology, 2018, 37(12):3736-3745.[2] 彭少麟, 周凯, 叶有华, 等. 城市热岛效应研究进展[J]. 生态学杂志, 2005, 14(4):574-579.[2] Peng S L, Zhou K, Ye Y H, et al. Research progress in urban heat island[J]. Ecology and Environment, 2005, 14(4):574-579.[3] 王文杰, 申文明, 刘晓曼, 等. 基于遥感的北京市城市化发展与城市热岛效应变化关系研究[J]. 环境科学研究, 2006, 19(2):44-48.[3] Wang W J, Shen W M, Liu X M, et al. Research on the relation of the urbanization and urban heat island effect changes in Beijing based on remote sensing[J]. Research of Environmental Sciences, 2006, 19(2):44-48.[4] 张艳, 鲍文杰, 余琦, 等. 超大城市热岛效应的季节变化特征及其年际差异[J]. 地球物理学报, 2012, 55(4):1121-1128.[4] Zhang Y, Bao W J, Yu Q, et al. Study on seasonal variations of the urban heat island and its interannual changes in a typical Chinese megacity[J]. Chinese J Geophys, 2012, 55(4):1121-1128. (in Chinese)[5] 刘航, 申格, 黄青, 等. 近10a武汉市城市热岛效应演变及其与土地利用变化的关系[J]. 长江流域资源与环境, 2017, 26(9):1466-1475.[5] Liu H, Shen G, Huang Q, et al. Evolution of urban heat island effect and its relationship with land use change in Wuhan City in recent 10 years[J]. Resources and Environment in the Yangtze Basin, 2017, 26(9):1466-1475.[6] Ren Z B, He X Y, Zheng H F, et al. Estimation of the relationship between urban park characteristics and park cool island intensity by remote sensing data and field measurement[J]. Forests, 2013, 4(4): 868-886. [7] 花利忠, 孙凤琴, 陈乔娜, 等. 基于Landsat-8影像的沿海城市公园冷岛效应——以厦门为例[J]. 生态学报, 2020, 40(22):8147-8157.[7] Hua L Z, Sun F Q, Chen J N, et al. Quantifying the cool-island effects of urban parks using Landsat-8 imagery in a coastal city,Xiamen,China[J]. Acta Ecologica Sinica, 2020, 40(22): 8147-8157.[8] Jaganmohan M, Knapp S, Buchmann C M, et al. The bigger,the better? The influence of urban green space design on cooling effects for residential areas[J]. Journal of Environmental Quality, 2016, 45(1):134-145. [9] Ren Y, Deng L Y, Zuo S D, et al. Quantifying the influences of various ecological factors on land surface temperature of urban forests[J]. Environmental Pollution, 2016, 216:519-529. [10] 杨一鹏, 曹广真, 侯鹏, 等. 城市湿地气候调节功能遥感监测评估[J]. 地理研究, 2013, 32(1):73-80.[10] Yang Y P, Cao G Z, Hou P, et al. Monitoring and evaluation for climate regulation service of urban wetlands with remote sensing[J]. Geographical Research, 2013, 32(1):73-80.[11] 陈旭, 李霖, 王江, 等. 城市绿地对热岛效应的缓解作用研——以台州市为例[J]. 生态环境学报, 2015, 24(4):643-649.[11] Chen X, Li L, Wang J, et al. Heat island effect mitigation by urban green space system:A case study of Taizhou City[J]. Ecology and Environmental Sciences, 2015, 24(4):643-649.[12] 王晓俊, 卫笑, 邹昊. 城市绿地空间格局对热岛效应的影响研究进展[J]. 生态环境学报, 2020, 29(9):1904-1911.[12] Wang X J, Wei X, Zou H. Research progress about the impact of urban green space spatial pattern on urban heat island[J]. Ecology and Environmental Sciences, 2000, 29(9): 1904-1911.[13] Ji Q, Yu M. Studying dynamical monitoring of heat island effect based on MODIS data in coastal cities of southeast Fujian Province[C]. Urban Remote Sensing Joint Event. Shanghai: IEEE, 2009.[14] Zhang J H, Yao F M. The characteristics of urban heat island variation in Beijing urban area and its impact factors[C]. Urban Remote Sensing Joint Event. Shanghai: IEEE, 2009.[15] Zhang X P, Wang D X, Hao H K, et al. Effects of land use/cover changes and urban forest configuration on urban heat islands in a loess hilly region:Case study based on Yan’an City,China[J]. International Journal of Environmental Research and Public Health, 2017, 14(8):840. [16] Li B Y, Wang W, Bai L, et al. Effects of spatio-temporal landscape patterns on land surface temperature:A case study of Xi‘an City,China[J]. Environmental Monit Assess, 2018, 190:419. [17] Liu K, Su H B, Li X K, et al. Quantifying spatial-temporal pattern of urban heat island in Beijing:An improved assessment using land surface temperature (LST) time series observations from Landsat,MODIS,and Chinese new satellite GaoFen-1[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2015:1939-1404.[18] Du H Y, Cai W B, Xu Y Q, et al. Quantifying the cool island effects of urban green spaces using remote sensing data[J]. Urban Forestry & Urban Greening, 2017, 27:24-31.[19] Ngulani T, Shackleton C M. The degree,extent and value of air temperature amelioration by urban green spaces in Bulawayo,Zimbabwe[J]. The South African Geographical Journal, 2019, 102(3):344-355. [20] Estoque R C, Murayama Y, Myint S W. Effects of landscape composition and pattern on land surface temperature:An urban heat island study in the megacities of Southeast Asia[J]. Science of the Total Environment, 2016, 577:349-359. [21] Li X M, Zhou W Q. Optimizing urban greenspace spatial pattern to mitigate urban heat island effects:Extending understanding from local to the city scale[J]. Urban Forestry & Urban Greening, 2019, 41:255-263.[22] 张硕, 刘勇洪, 黄宏涛. 珠三角城市群热岛时空分布及定量评估研究[J]. 生态环境学报, 2017, 26(7):1157-1166.[22] Zhang S, Liu Y H, Huang H T. Research on quantitative evaluations and spatial and temporal distribution of heat islands for the Pearl River Delta agglomeration[J]. Ecology and Environmental Sciences, 2017, 26(7): 1157-1166.[23] 陈燕红, 蔡芫镔, 仝川. 基于遥感的城市绿色空间演化过程的温度效应研究——以福州主城区为例[J]. 生态学报, 2020, 40(7):2439-2449.[23] Chen Y H, Cai Y B, Tong C. Temperature effect under the green space evolution based on remote sensing:A case study of Fuzhou,China[J]. Acta Ecologica Sinica, 2020, 40(7):2439-2449.[24]唐山市人民政府. 唐山统计年鉴[M]. 北京: 中国统计出版社, 2019.[24]Tangshan Municipal People’s Government. Tangshan statistical yearbook[M]. Beijing: China Statistics Press, 2019.[25] 张学儒, 陈春, 董坤. 基于RS与GIS唐山海岸带地区近50年土地利用格局时空特征分析[J]. 西北农业学报, 2013, 22(2):204-208.[25] Zhang X R, Chen C, Dong K. Analysis of temporal and spatial characteristics of land use pattern in Tangshan coastal zone from 1956 to 2005 based on RS and GIS[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2013, 22(2):204-208.[26] 金点点, 宫兆宁. 基于Landsat系列数据地表温度反演算法对比分析——以齐齐哈尔市辖区为例[J]. 遥感技术与应用, 2018, 33(5):830-841.[26] Jin D D, Gong Z N. Algorithms comparison of land surface temperature retrieval from Landsat series data:A case study in Qiqihar,China[J]. Remote Sensing Technology and Application, 2018, 33(5): 830-841.[27] 覃志豪, 张明华, Arnon Karnieli, 等. 用陆地卫星TM6数据演算地表温度的单窗算法[J]. 地理学报, 2001, 56(4):456-466. [27] Qin Z H, Zhang M H, Arnon Karnieli, et al. Mono-window algorithm for retrieving land surface temperature from Landsat TM6 data[J]. Acta Geographica Sinica, 2001, 56(4):456-466. [28] Jimenez‐Munoz J C, Sobrino J A. A generalized single-channel method for retrieving land surface temperature from remote sensing data[J]. Journal of Geophysical Research, 2003, 108(D22):2015-2023.[29] 毛克彪, 唐华俊, 周清波, 等. 用辐射传输方程从MODIS数据中反演地表温度的方法[J]. 兰州大学学报(自然科学版), 2007, 43(4):12-17.[29] Mao K B, Tang H J, Zhou Q B, et al. Retrieving land surface temperature from MODIS data by using radiance transfer equation[J]. Journal of Lanzhou University(Natural Sciences), 2007, 43(4):12-17.[30] Rozenstein O, Qin Z H, Derimian Y, et al. Derivation of land surface temperature for Landsat-8 TIRS using a split window algorithm[J]. Sensors, 2014, 14(4):5768-5780. [31] 覃志豪, 李文娟, 徐斌, 等. 陆地卫星TM6波段范围内地表比辐射率的估计[J]. 国土资源遥感, 2004, 61(3):28-30.doi: 10.6046/gtzyyg.2004.03.07. [31] Qin Z H, Li W J, Xu B, et al. The estimation of land surface emissivity for Landsat TM6[J]. Remote Sensing for Land and Resources, 2004, 61(3):28-30.doi: 10.6046/gtzyyg.2004.03.07. [32] 宋挺, 段峥, 刘军志, 等. Landsat8数据地表温度反演算法对比[J]. 遥感学报, 2015, 19(3):451-464.[32] Song T, Duan Z, Liu J Z, et al. Comparison of four algorithms to retrieve land surface temperature using Landsat 8 satellite[J]. Journal of Remote Sensing, 2015, 19(3):451-464.[33] Peng J, Xie P, Liu Y X, et al. Urban thermal environment dynamics and associated landscape pattern factors: A case study in the Beijing metropolitan region[J]. Remote Sensing of Environment, 2016, 173:145-155. [34] 孟伟庆, 李洪远, 朱琳, 等. 城市绿化的发展思路&—绿色空间建设[J]. 城市环境与城市生态, 2005, 18(2):8-10.[34] Meng W Q, Li H Y, Zhu L, et al. Ideas on urban greening-green space construction[J]. Urban Environment & Urban Ecology, 2005, 18(2):8-10.[35] 李锋, 王如松, Juergen Paulussen. 北京市绿色空间生态概念规划研究[J]. 城市规划学刊, 2004(4):61-64.

    [35] Li F, Wang R S, Juergen Paulussen. Study on ecological concept planning of green space in Beijing[J]. Urban Planning Forum, 2004(4):61-64.

  • 加载中
计量
  • 文章访问数:  1565
  • PDF下载数:  63
  • 施引文献:  0
出版历程
收稿日期:  2021-06-30
刊出日期:  2022-06-20

目录