Remote sensing-based green space evolution in Tangshan and its influence on heat island effect
-
摘要: 城市环境问题是当今世界面临的重要问题,城市热岛问题是其中重要研究方向之一,伴随着城市扩张、人口增加,城市热岛效应也发生着显著的变化。以Landsat系列卫星资料为数据源,河北省唐山市中心城区为主要研究区,利用辐射传输方程、监督分类、重心迁移、随机采样等方法,分析绿色空间演化对城市温度变化的影响。研究结果表明: ①研究时段内,热岛发展方向和面积与城市快速发展的规模和方向较为一致,冷热岛重心的迁移方向和绿色空间、城镇重心迁移方向相类似,冷岛重心迁移距离要大于热岛重心; ②城市绿色空间持续损失,其中农业用地损失面积最大,为55.79 km2,城镇用地增加面积最大,为47.85 km2; ③在不同时期,冷热岛演化的趋势与绿色空间演化趋势不一致,这或许与绿色空间存量有一定关系; ④绿色空间扩张对于城市地表降温的作用(-0.16 ℃)远小于绿色空间损失造成的地表升温作用(6.37 ℃)。研究结果能给城市规划提供参考,合理布局绿色空间,保留足够的绿色空间存量,有效降低城市热岛效应的发展速度。Abstract: The urban environment is an important issue in the whole world, and the urban heat island (UHI) effect is one of the important research topics. Owing to the expansion of the urban area and the increase in population, the urban heat island effect has also significantly changed. With the Landsat imageries as the data source and the central urban area of Tangshan City, Hebei Province as the main study area, this study analyzed the impacts of green space evolution on urban temperature change using the methods such as the radiative transfer equation algorithm, supervised classification, gravity center shift, and random sampling. The results are as follows. ① During the study period, the development direction and area of UHIs were roughly consistent with the scale and direction of rapid urban development. Moreover, the migration directions of the gravity centers of the UCI/UHIs were similar to those of the green space and urban area, with the migration distance of the gravity centers of UCIs greater than that of the UHIs. ② The urban green space (UGS) has been continuously lost during the study period, with the largest loss area of approximately 55.79 km2 occurring in agricultural land. Moreover, the largest increased area occurred in urban land and was approximately 47.85 km2. ③ The evolutionary trends of UCIs/UHIs were inconsistent with those of the UGS in different periods. This result may be related to the stock of green space. ④ The cooling effect on the urban surface (-0.16 ℃) induced by green space expansion was much smaller than the warming effect on the urban surface (6.37 ℃) caused by green space loss. The research results will provide a reference for urban planning in order to rationally arrange green space, retain sufficient green space, and effectively reduce the development speed of UHIs.
-
Key words:
- urban heat island /
- landsat /
- green space evolution /
- temperature influences
-
-
[1] 潘莹, 崔林林, 刘昌脉, 等. 基于MODIS数据的重庆市城市热岛效应时空分析[J]. 生态学杂志, 2018, 37(12):3736-3745.[1] Pan Y, Cui L L, Liu C M, et al. Spatiotemporal distribution of urban heat island effect based on MODIS data in Chongqing,China[J]. Chinese Journal of Ecology, 2018, 37(12):3736-3745.[2] 彭少麟, 周凯, 叶有华, 等. 城市热岛效应研究进展[J]. 生态学杂志, 2005, 14(4):574-579.[2] Peng S L, Zhou K, Ye Y H, et al. Research progress in urban heat island[J]. Ecology and Environment, 2005, 14(4):574-579.[3] 王文杰, 申文明, 刘晓曼, 等. 基于遥感的北京市城市化发展与城市热岛效应变化关系研究[J]. 环境科学研究, 2006, 19(2):44-48.[3] Wang W J, Shen W M, Liu X M, et al. Research on the relation of the urbanization and urban heat island effect changes in Beijing based on remote sensing[J]. Research of Environmental Sciences, 2006, 19(2):44-48.[4] 张艳, 鲍文杰, 余琦, 等. 超大城市热岛效应的季节变化特征及其年际差异[J]. 地球物理学报, 2012, 55(4):1121-1128.[4] Zhang Y, Bao W J, Yu Q, et al. Study on seasonal variations of the urban heat island and its interannual changes in a typical Chinese megacity[J]. Chinese J Geophys, 2012, 55(4):1121-1128. (in Chinese)[5] 刘航, 申格, 黄青, 等. 近10a武汉市城市热岛效应演变及其与土地利用变化的关系[J]. 长江流域资源与环境, 2017, 26(9):1466-1475.[5] Liu H, Shen G, Huang Q, et al. Evolution of urban heat island effect and its relationship with land use change in Wuhan City in recent 10 years[J]. Resources and Environment in the Yangtze Basin, 2017, 26(9):1466-1475.[6] Ren Z B, He X Y, Zheng H F, et al. Estimation of the relationship between urban park characteristics and park cool island intensity by remote sensing data and field measurement[J]. Forests, 2013, 4(4): 868-886. [7] 花利忠, 孙凤琴, 陈乔娜, 等. 基于Landsat-8影像的沿海城市公园冷岛效应——以厦门为例[J]. 生态学报, 2020, 40(22):8147-8157.[7] Hua L Z, Sun F Q, Chen J N, et al. Quantifying the cool-island effects of urban parks using Landsat-8 imagery in a coastal city,Xiamen,China[J]. Acta Ecologica Sinica, 2020, 40(22): 8147-8157.[8] Jaganmohan M, Knapp S, Buchmann C M, et al. The bigger,the better? The influence of urban green space design on cooling effects for residential areas[J]. Journal of Environmental Quality, 2016, 45(1):134-145. [9] Ren Y, Deng L Y, Zuo S D, et al. Quantifying the influences of various ecological factors on land surface temperature of urban forests[J]. Environmental Pollution, 2016, 216:519-529. [10] 杨一鹏, 曹广真, 侯鹏, 等. 城市湿地气候调节功能遥感监测评估[J]. 地理研究, 2013, 32(1):73-80.[10] Yang Y P, Cao G Z, Hou P, et al. Monitoring and evaluation for climate regulation service of urban wetlands with remote sensing[J]. Geographical Research, 2013, 32(1):73-80.[11] 陈旭, 李霖, 王江, 等. 城市绿地对热岛效应的缓解作用研——以台州市为例[J]. 生态环境学报, 2015, 24(4):643-649.[11] Chen X, Li L, Wang J, et al. Heat island effect mitigation by urban green space system:A case study of Taizhou City[J]. Ecology and Environmental Sciences, 2015, 24(4):643-649.[12] 王晓俊, 卫笑, 邹昊. 城市绿地空间格局对热岛效应的影响研究进展[J]. 生态环境学报, 2020, 29(9):1904-1911.[12] Wang X J, Wei X, Zou H. Research progress about the impact of urban green space spatial pattern on urban heat island[J]. Ecology and Environmental Sciences, 2000, 29(9): 1904-1911.[13] Ji Q, Yu M. Studying dynamical monitoring of heat island effect based on MODIS data in coastal cities of southeast Fujian Province[C]. Urban Remote Sensing Joint Event. Shanghai: IEEE, 2009.[14] Zhang J H, Yao F M. The characteristics of urban heat island variation in Beijing urban area and its impact factors[C]. Urban Remote Sensing Joint Event. Shanghai: IEEE, 2009.[15] Zhang X P, Wang D X, Hao H K, et al. Effects of land use/cover changes and urban forest configuration on urban heat islands in a loess hilly region:Case study based on Yan’an City,China[J]. International Journal of Environmental Research and Public Health, 2017, 14(8):840. [16] Li B Y, Wang W, Bai L, et al. Effects of spatio-temporal landscape patterns on land surface temperature:A case study of Xi‘an City,China[J]. Environmental Monit Assess, 2018, 190:419. [17] Liu K, Su H B, Li X K, et al. Quantifying spatial-temporal pattern of urban heat island in Beijing:An improved assessment using land surface temperature (LST) time series observations from Landsat,MODIS,and Chinese new satellite GaoFen-1[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2015:1939-1404.[18] Du H Y, Cai W B, Xu Y Q, et al. Quantifying the cool island effects of urban green spaces using remote sensing data[J]. Urban Forestry & Urban Greening, 2017, 27:24-31.[19] Ngulani T, Shackleton C M. The degree,extent and value of air temperature amelioration by urban green spaces in Bulawayo,Zimbabwe[J]. The South African Geographical Journal, 2019, 102(3):344-355. [20] Estoque R C, Murayama Y, Myint S W. Effects of landscape composition and pattern on land surface temperature:An urban heat island study in the megacities of Southeast Asia[J]. Science of the Total Environment, 2016, 577:349-359. [21] Li X M, Zhou W Q. Optimizing urban greenspace spatial pattern to mitigate urban heat island effects:Extending understanding from local to the city scale[J]. Urban Forestry & Urban Greening, 2019, 41:255-263.[22] 张硕, 刘勇洪, 黄宏涛. 珠三角城市群热岛时空分布及定量评估研究[J]. 生态环境学报, 2017, 26(7):1157-1166.[22] Zhang S, Liu Y H, Huang H T. Research on quantitative evaluations and spatial and temporal distribution of heat islands for the Pearl River Delta agglomeration[J]. Ecology and Environmental Sciences, 2017, 26(7): 1157-1166.[23] 陈燕红, 蔡芫镔, 仝川. 基于遥感的城市绿色空间演化过程的温度效应研究——以福州主城区为例[J]. 生态学报, 2020, 40(7):2439-2449.[23] Chen Y H, Cai Y B, Tong C. Temperature effect under the green space evolution based on remote sensing:A case study of Fuzhou,China[J]. Acta Ecologica Sinica, 2020, 40(7):2439-2449.[24]唐山市人民政府. 唐山统计年鉴[M]. 北京: 中国统计出版社, 2019.[24]Tangshan Municipal People’s Government. Tangshan statistical yearbook[M]. Beijing: China Statistics Press, 2019.[25] 张学儒, 陈春, 董坤. 基于RS与GIS唐山海岸带地区近50年土地利用格局时空特征分析[J]. 西北农业学报, 2013, 22(2):204-208.[25] Zhang X R, Chen C, Dong K. Analysis of temporal and spatial characteristics of land use pattern in Tangshan coastal zone from 1956 to 2005 based on RS and GIS[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2013, 22(2):204-208.[26] 金点点, 宫兆宁. 基于Landsat系列数据地表温度反演算法对比分析——以齐齐哈尔市辖区为例[J]. 遥感技术与应用, 2018, 33(5):830-841.[26] Jin D D, Gong Z N. Algorithms comparison of land surface temperature retrieval from Landsat series data:A case study in Qiqihar,China[J]. Remote Sensing Technology and Application, 2018, 33(5): 830-841.[27] 覃志豪, 张明华, Arnon Karnieli, 等. 用陆地卫星TM6数据演算地表温度的单窗算法[J]. 地理学报, 2001, 56(4):456-466. [27] Qin Z H, Zhang M H, Arnon Karnieli, et al. Mono-window algorithm for retrieving land surface temperature from Landsat TM6 data[J]. Acta Geographica Sinica, 2001, 56(4):456-466. [28] Jimenez‐Munoz J C, Sobrino J A. A generalized single-channel method for retrieving land surface temperature from remote sensing data[J]. Journal of Geophysical Research, 2003, 108(D22):2015-2023.[29] 毛克彪, 唐华俊, 周清波, 等. 用辐射传输方程从MODIS数据中反演地表温度的方法[J]. 兰州大学学报(自然科学版), 2007, 43(4):12-17.[29] Mao K B, Tang H J, Zhou Q B, et al. Retrieving land surface temperature from MODIS data by using radiance transfer equation[J]. Journal of Lanzhou University(Natural Sciences), 2007, 43(4):12-17.[30] Rozenstein O, Qin Z H, Derimian Y, et al. Derivation of land surface temperature for Landsat-8 TIRS using a split window algorithm[J]. Sensors, 2014, 14(4):5768-5780. [31] 覃志豪, 李文娟, 徐斌, 等. 陆地卫星TM6波段范围内地表比辐射率的估计[J]. 国土资源遥感, 2004, 61(3):28-30.doi: 10.6046/gtzyyg.2004.03.07. [31] Qin Z H, Li W J, Xu B, et al. The estimation of land surface emissivity for Landsat TM6[J]. Remote Sensing for Land and Resources, 2004, 61(3):28-30.doi: 10.6046/gtzyyg.2004.03.07. [32] 宋挺, 段峥, 刘军志, 等. Landsat8数据地表温度反演算法对比[J]. 遥感学报, 2015, 19(3):451-464.[32] Song T, Duan Z, Liu J Z, et al. Comparison of four algorithms to retrieve land surface temperature using Landsat 8 satellite[J]. Journal of Remote Sensing, 2015, 19(3):451-464.[33] Peng J, Xie P, Liu Y X, et al. Urban thermal environment dynamics and associated landscape pattern factors: A case study in the Beijing metropolitan region[J]. Remote Sensing of Environment, 2016, 173:145-155. [34] 孟伟庆, 李洪远, 朱琳, 等. 城市绿化的发展思路&—绿色空间建设[J]. 城市环境与城市生态, 2005, 18(2):8-10.[34] Meng W Q, Li H Y, Zhu L, et al. Ideas on urban greening-green space construction[J]. Urban Environment & Urban Ecology, 2005, 18(2):8-10.[35] 李锋, 王如松, Juergen Paulussen. 北京市绿色空间生态概念规划研究[J]. 城市规划学刊, 2004(4):61-64.
[35] Li F, Wang R S, Juergen Paulussen. Study on ecological concept planning of green space in Beijing[J]. Urban Planning Forum, 2004(4):61-64.
-
计量
- 文章访问数: 1565
- PDF下载数: 63
- 施引文献: 0