中国自然资源航空物探遥感中心主办
地质出版社出版

基于多维卷积神经网络的多源高分辨率卫星影像茶园分类

廖廓, 聂磊, 杨泽宇, 张红艳, 王艳杰, 彭继达, 党皓飞, 冷伟. 2022. 基于多维卷积神经网络的多源高分辨率卫星影像茶园分类. 自然资源遥感, 34(2): 152-161. doi: 10.6046/zrzyyg.2021202
引用本文: 廖廓, 聂磊, 杨泽宇, 张红艳, 王艳杰, 彭继达, 党皓飞, 冷伟. 2022. 基于多维卷积神经网络的多源高分辨率卫星影像茶园分类. 自然资源遥感, 34(2): 152-161. doi: 10.6046/zrzyyg.2021202
LIAO Kuo, NIE Lei, YANG Zeyu, ZHANG Hongyan, WANG Yanjie, PENG Jida, DANG Haofei, LENG Wei. 2022. Classification of tea garden based on multi-source high-resolution satellite images using multi-dimensional convolutional neural network. Remote Sensing for Natural Resources, 34(2): 152-161. doi: 10.6046/zrzyyg.2021202
Citation: LIAO Kuo, NIE Lei, YANG Zeyu, ZHANG Hongyan, WANG Yanjie, PENG Jida, DANG Haofei, LENG Wei. 2022. Classification of tea garden based on multi-source high-resolution satellite images using multi-dimensional convolutional neural network. Remote Sensing for Natural Resources, 34(2): 152-161. doi: 10.6046/zrzyyg.2021202

基于多维卷积神经网络的多源高分辨率卫星影像茶园分类

  • 基金项目:

    福建省气象局开放式研究基金项目”遥感与机器算法对厦门城市PM2.5浓度预测研究”(2020KX03)

    福建省气象局开放式研究基金项目”基于误差理论的全球蒸散发产品武夷山季风变化敏感区质量评估研究”(2021kfm03)

详细信息
    作者简介: 廖 廓(1978-),男,硕士,高级工程师,主要从事生态遥感研究。Email: 85832679@qq.com
  • 中图分类号: TP79

Classification of tea garden based on multi-source high-resolution satellite images using multi-dimensional convolutional neural network

  • 武夷山市地形条件、茶园种植结构复杂,云雨天气多、卫星影像难获取。针对单一影像源茶园难提取的问题,以武夷山市新田镇为研究区,综合Sentinel-2影像的光谱信息和Google影像的纹理特征,提出一种基于多源高分辨率卫星影像和多维卷积神经网络(multidimensional multi-source convolutional neural networks, MM-CNN)的茶园分类方法。该方法以一维和二维卷积神经网络为基础,根据不同分辨率的影像,通过建立2种模型,分别提取茶园及疑似区域,并融合2个模型结果,最终得到茶园分布,以相对经济、高效的方式完成研究区茶园分布的高精度提取。结果表明,MM-CNN融合多源高分辨率影像进行茶园提取的空间分布精度优于单一影像源方法,MM-CNN方法具有一定的普适性和鲁棒性,为南方丘陵山区大范围高效监测茶园分布情况提供了方法参考。
  • 加载中
  • [1]

    李龙伟, 李楠, 陆灯盛. 多时相Sentinel-2影像在浙西北茶园信息提取中的应用[J]. 浙江农林大学学报, 2019, 36(5):841-848.[1] Li L W, Li N, Lu D S. Mapping tea gardens spatial distribution in northwestern Zhejiang Province using multi-temporal Sentinel-2 imagery[J]. Journal of Zhejiang A & F University, 2019, 36(5):841-848.[2] Phan P, Chen N, Xu L, et al. Using multi-temporal MODIS NDVI data to monitor tea status and forecast yield:A case study at Tanuyen,Laichau,Vietnam[J]. Remote Sensing, 2020, 12(11):1814. [3] Das A C. Integrating an expert system,GIS,and satellite remote sensing to evaluate land suitability for sustainable tea production in Bangladesh[J]. Remote Sensing, 2020, 12(24):25. [4] 何小娟. 名山县茶园生态系统碳汇能力分析[D]. 成都: 四川农业大学, 2013.[4] He X J. Analysis the carbon sequestration capacity of the tea plantation of Mingshan County[D]. Chengdu: Sichuan Agricultural University, 2013.[5] 赵晓晴, 王萍, 荆林海, 等. 时序Sentinel-2A影像光谱特征的茶园提取应用[J]. 测绘科学, 2020, 264(6):84-92.[5] Zhao X Q, Wang P, Jing L H, et al. The application of spectral characteristics of time series Sentinel-2A images in tea land extraction[J]. Science of Surveying and Mapping, 2020, 264(6):84-92.[6] Zhu J, Pan Z, Wang H, et al. An improved multi-temporal and multi-feature tea plantation identification method using Sentinel-2 imagery[J]. Sensors, 2019, 19(9):2087. [7] Huang Y, Li S, Yuang L, et al. Estimating tea plantation area based on multi-source satellite data[C]// 2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), 2019.[8] 杨艳魁, 陈芸芝, 吴波, 等. 基于高分二号影像结合纹理信息的茶园提取[J]. 江苏农业科学, 2019, 47(2):210-214.[8] Yang Y K, Chen Y Z, Wu B, et al. Extraction of tea plantation image based on GF-2 image and texture information[J]. Jiangsu Agricultural Sciences, 2019, 47(2):210-214.[9] 徐伟燕, 孙睿, 金志凤. 基于资源三号卫星影像的茶树种植区提取[J]. 农业工程学报, 2016(s1):161-168.[9] Xu W Y, Sun R, Jin Z F. Extracting tea plantations based on ZY-3 satellite data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016(s1):161-168.[10] Blaschke T, Hay G J, Kelly M, et al. Geographic object-based image analysis-Towards a new paradigm-sciencedirect[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 87:180-191. [11] 陈慧, 江洪, 蒋世豪. 面向对象最优分割尺度下的茶园提取[J]. 测绘与空间地理信息, 2020, 43(12):17-20.[11] Chen H, Jiang H, Jiang S H. Tea plantation extraction under object-oriented optimal segmentaton scale[J]. Geomatics & Spatial Information Technology, 2020, 43(12):17-20.[12] 吴锦玉. 基于高分遥感影像纹理空间模式增强的非参数化茶园识别方法研究[D]. 昆明: 云南师范大学, 2020.[12] Wu J Y. Research on non-parametric tea garden recognition method based on texture spatial model enhancement of high-resolution remote sensing image[D]. Kunming: Yunnan Noraml Univerity, 2020.[13] Jamil A, Bayram B. The delineation of tea gardens from high resolution digital orthoimages using mean-shift and supervised machine learning methods[J]. Geocarto International, 2021, 36(7):758-772. [14] 许光明. 基于面向对象和多源数据融合的茶园遥感提取研究[D]. 西安: 陕西师范大学, 2016.[14] Xu G M. Research on tea garden remote sensing extraction based on object-oriented and multi-Metadata[D]. Xi’an: Shaanxi Normal University, 2016.[15] 马超, 杨飞, 王学成. 基于中尺度光谱和时序物候特征提取南方丘陵山区茶园[J]. 国土资源遥感, 2019, 31(1):141-148.doi: 10.6046/gtzyyg.2019.01.19. [15] Ma C, Yang F, Wang X C. Extracting tea plantations in southern hilly and mountainous region based on mesoscale spectrum and temporal phenological features[J]. Remote Sensing for Land and Resources, 2019, 31(1):141-148.doi: 10.6046/gtzyyg.2019.01.19. [16] 姚建华, 吴加敏, 杨勇, 等. 全卷积神经网络下的多光谱遥感影像分割[J]. 中国图象图形学报, 2020, 25(1):180-192.[16] Yao J H, Wu J M, Yang Y, et al. Segmentation in multi-spectral remote sensing images using the fully convolutional neural network[J]. Jounrnal of Image and Graphics, 2020, 25(1):180-192.[17] Huang X, Zhu Z R, Li Y S, et al. Tea garden detection from high-resolution imagery using a scene-based framework[J]. Photogrammetric Engineering & Remote Sensing, 2018, 84(11):723-731.[18] 王小芹, 张志梅, 王常颖. 基于多尺度词包表示的hLDA模型的茶园识别研究[J]. 青岛大学学报(自然科学版), 2020, 131(3):32-37,46.[18] Wang X Q, Zhang Z M, Wang C Y, High resolution remote sensing image recognition of tea plantation based on hierarchical latent Dirichlet allocation model[J]. Journal of Qingdao University(Natural Science Edition), 2020, 131(3):32-37,46.[19] 朱泽润. 基于高分辨率遥感影像的茶园场景提取方法[D]. 武汉: 武汉大学, 2018.[19] Zhu Z R. Tea garden scene detection from high-resolution remote sensing imagery[D]. Wuhan: Wuhan University, 2018.[20] 陈厚坤, 孙仁诚. 基于深度学习的遥感图像茶园区域识别应用研究[J]. 工业控制计算机, 2020, 33(2):93-94,96.[20] Chen H K, Sun R C. Tea plantation classification techonology using remote sensing image based deep learning[J]. Industrial Control Computer, 2020, 33(2):93-94,96.[21] Tang Z, Li M, Wang X. Mapping tea plantations from VHR images using OBIA and convolutional neural networks[J]. Remote Sensing, 2020, 12(18):2935. [22] Jamil A, Bayram B. Automatic discriminative feature extraction using convolutional neural network for remote sensing image classification[C]// The 40th Asian Conference on Remote Sensing, 2019.[23] 黄邵东, 徐伟恒, 吴超, 等. 遥感在茶园监测中的应用研究进展[J]. 西部林业科学, 2020(2):1-9.[23] Huang S D, Xu W H, Wu C, et al. Research progress of remote sensing on tea plantation monitoring[J]. Journal of West China Forestry Science, 2020(2):1-9.[24] 叶元高, 李远华. 武夷山茶产业发展现状与措施[J]. 台湾农业探索, 2016(4):59-63.[24] Ye Y G, Li Y H. Development status of tea industry in Wuyishan City and its countermeasures[J]. Taiwan Agricultural Research, 2016(4):59-63.[25] Li Z, Chen G, Zhang T. A CNN-transformer hybrid approach for crop classification using multitemporal multisensor images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:847-858. [26] Ronneberger O, Fischer P, Brox T. U-Net:Convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention.Springer,Cham, 2015.[27] Bodansky E, Gribov A, Pilouk M. Smoothing and compression of lines obtained by raster-to-vector conversion[C]// Graphics Recognition Algorithms & Applications,International Workshop,Grec,Kingston,Ontario,Canada,September,Selected Papers.Springer-Verlag, 2001.[28] 杨泽宇, 张洪艳, 明金, 等. 深度学习在高分辨率遥感影像冬油菜提取中的应用[J]. 测绘通报, 2020, 522(9):113-116.[28] Yang Z Y, Zhang H Y, Ming J, et al. Extraction of winter rapeseed from high-resolution remote sensing imagery via deep learning[J]. Bulletin of Surveying and Mapping, 2020, 522(9):113-116.[29]武夷山市统计局. 武夷山统计年鉴——2020[M]. 北京: 中国统计出版社, 2020.[29]Statistical Bureau of Wuyishan City. Statistics yearbook of Wuyishan[M]. Beijing: China Statistics Press, 2020.[30] 刘岳明, 杨晓梅, 王志华, 等. 基于深度学习RCF模型的三都澳筏式养殖区提取研究[J]. 海洋学报, 2019, 41(4):119-130.

    [30] Liu Y M, Yang X M, Wang Z H, et al. Extracting raft aquaculture areas in Sanduao from high-resolution remote sensing images using RCF[J]. Haiyang Xuebao, 2019, 41(4):119-130.

  • 加载中
计量
  • 文章访问数:  2240
  • PDF下载数:  165
  • 施引文献:  0
出版历程
收稿日期:  2021-06-30
刊出日期:  2022-06-20

目录