中国自然资源航空物探遥感中心主办
地质出版社出版

基于卷积神经网络的遥感影像及DEM滑坡识别——以黄土滑坡为例

杨昭颖, 韩灵怡, 郑向向, 李文吉, 冯磊, 王轶, 杨永鹏. 2022. 基于卷积神经网络的遥感影像及DEM滑坡识别——以黄土滑坡为例. 自然资源遥感, 34(2): 224-230. doi: 10.6046/zrzyyg.2021204
引用本文: 杨昭颖, 韩灵怡, 郑向向, 李文吉, 冯磊, 王轶, 杨永鹏. 2022. 基于卷积神经网络的遥感影像及DEM滑坡识别——以黄土滑坡为例. 自然资源遥感, 34(2): 224-230. doi: 10.6046/zrzyyg.2021204
YANG Zhaoying, HAN Lingyi, ZHENG Xiangxiang, LI Wenji, FENG Lei, WANG Yi, YANG Yongpeng. 2022. Landslide identification using remote sensing images and DEM based on convolutional neural network: A case study of loess landslide. Remote Sensing for Natural Resources, 34(2): 224-230. doi: 10.6046/zrzyyg.2021204
Citation: YANG Zhaoying, HAN Lingyi, ZHENG Xiangxiang, LI Wenji, FENG Lei, WANG Yi, YANG Yongpeng. 2022. Landslide identification using remote sensing images and DEM based on convolutional neural network: A case study of loess landslide. Remote Sensing for Natural Resources, 34(2): 224-230. doi: 10.6046/zrzyyg.2021204

基于卷积神经网络的遥感影像及DEM滑坡识别——以黄土滑坡为例

  • 基金项目:

    自然资源部航空物理与遥感地质重点实验室课题”基于深度学习的滑坡体识别方法研究”(2020YFL26)

    中国地质调查局项目(DD20191006)

详细信息
    作者简介: 杨昭颖(1992-),女,硕士,工程师,研究方向为数据挖掘与人工智能。Email: zhaoyingzhaoting@163.com
  • 中图分类号: TP751;TP399

Landslide identification using remote sensing images and DEM based on convolutional neural network: A case study of loess landslide

  • 我国是滑坡灾害频发的国家之一,近年来发生的灾难性地质灾害事件有70%以上都不在已知的地质灾害隐患点范围内,亟须通过自动高效的滑坡识别技术方法开展大规模滑坡灾害排查。为了从海量遥感影像中快速识别滑坡的位置,确定滑坡重点区,支撑后续的解译与研究,以黄土滑坡为例,基于GF-1影像与数字高程模型(digital elevation model,DEM) 数据开展滑坡识别研究。首先构建了遥感影像和DEM滑坡样本库,然后应用通道融合卷积神经网络模型对滑坡样本进行分类,最后将分类结果按照位置信息还原到遥感影像图中。实验结果表明模型的滑坡识别精度可达95.7%,召回率为100.0%。研究所用模型的网络层数较少,收敛速度快,具有更高的效率与识别精度,解决了在样本有限的情况下,从遥感影像中快速确定滑坡重点区的问题,以支撑大规模滑坡灾害排查。
  • 加载中
  • [1]

    许强, 董秀军, 李为乐. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报(信息科学版), 2019, 44(7):957-966.[1] Xu Q, Dong X J, Li W L. Integrated space-air-ground early detection,monitoring and warning system for potential catastrophic geohazards[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7):957-966.[2] 李松, 李亦秋, 安裕伦. 基于变化检测的滑坡灾害自动识别[J]. 遥感信息, 2010(1):27-31.[2] Li S, Li Y Q, An Y L. Automatic recognition of landslides based on change detection[J]. Remote Sensing Information, 2010(1):27-31.[3] 张帅娟. 变化检测和面向对象结合的高分辨率遥感影像滑坡体提取方法研究[D]. 成都: 西南交通大学, 2017.[3] Zhang S J. Research on landslide body extraction method from high-resolution remote sensing image based on change detection and object-oriented[D]. Chengdu: Southwest Jiaotong University, 2017.[4] 周志华, 林维芳, 许高程, 等. 基于面向对象的滑坡快速识别技术研究[J]. 安徽农业科学, 2012, 40(5):3017-3018,3071.[4] Zhou Z H, Lin W F, Xu G C, et al. Research of fast landslide recognition based on object-oriented technology[J]. Journal of Abhui Agricultural Sciences, 2012, 40(5):3017-3018,3071.[5] 丁辉, 张茂省, 朱卫红, 等. 黄土滑坡高分辨率遥感影像识别——以陕西省延安市地区为例[J]. 西北地质, 2019, 52(3):231-239.[5] Ding H, Zhang M S, Zhu W H, et al. High resolution remote sensing for the identification if loess landslides:Example from Yan’an City[J]. Northwestern Geology, 2019, 52(3):231-239.[6] Ye C M, Li Y, Cui P, et al. Landslide detection of hyperspectral remote sensing data based on deep learning with constrains[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(12):5047-5060. [7] Ghorbanzadeh O, Blaschke T, Gholamnia K, et al. Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection[J]. Remote Sensing, 2019, 11(2):1-21. [8] Wang H J, Zhang L M, Yin K S, et al. Landslide identification using machine learning[J]. Geoscience Frontiers, 2020, 12(1):351-364. [9] 巨袁臻, 许强, 金时超, 等. 使用深度学习方法实现黄土滑坡自动识别[J]. 武汉大学学报(信息科学版), 2020, 45(11):1747-1755.[9] Ju Y Z, Xu Q, Jin S C, et al. Automatic object detection of loess landslide based on deep learning[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11):1747-1755.[10] Ji S P, Yu D W, Shen C Y, et al. Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks[J]. Landslides, 2020:1-16.[11] Yu B, Chen F, Xu C. Landslide detection based on contour-based deep learning framework in case of national scale of Nepal in 2015[J]. Computers & Geosciences, 2020, 135:104388. [12] Ullo S L, Mohan A, Sebastianelli A, et al. A new Mask R-CNN-based method for improved landslide detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14:3799-810. [13] Cheng L, Li J, Duan P, et al. A small attentional YOLO model for landslide detection from satellite remote sensing images[J]. Landslides, 2021, 18(8):2751-65. [14] Catani F. Landslide detection by deep learning of non-nadiral and crowdsourced optical images[J]. Landslides, 2021, 18(3):1025-44. [15] Haciefendioglu K, Demir G, Basaga H B. Landslide detection using visualization techniques for deep convolutional neural network models[J]. Natural Hazards, 2021, 109(1):329-50.

  • 加载中
计量
  • 文章访问数:  3336
  • PDF下载数:  303
  • 施引文献:  0
出版历程
收稿日期:  2021-06-30
刊出日期:  2022-06-20

目录