中国自然资源航空物探遥感中心主办
地质出版社出版

基于多时相Sentinel-1A的沼泽湿地水面时空动态变化监测

韦嫦, 付波霖, 覃娇玲, 王雅南, 陈智瀚, 刘兵. 2022. 基于多时相Sentinel-1A的沼泽湿地水面时空动态变化监测. 自然资源遥感, 34(2): 251-260. doi: 10.6046/zrzyyg.2021205
引用本文: 韦嫦, 付波霖, 覃娇玲, 王雅南, 陈智瀚, 刘兵. 2022. 基于多时相Sentinel-1A的沼泽湿地水面时空动态变化监测. 自然资源遥感, 34(2): 251-260. doi: 10.6046/zrzyyg.2021205
WEI Chang, FU Bolin, QIN Jiaoling, WANG Yanan, CHEN Zhihan, LIU Bing. 2022. Monitoring of spatial-temporal dynamic changes in water surface in marshes based on multi-temporal Sentinel-1A data. Remote Sensing for Natural Resources, 34(2): 251-260. doi: 10.6046/zrzyyg.2021205
Citation: WEI Chang, FU Bolin, QIN Jiaoling, WANG Yanan, CHEN Zhihan, LIU Bing. 2022. Monitoring of spatial-temporal dynamic changes in water surface in marshes based on multi-temporal Sentinel-1A data. Remote Sensing for Natural Resources, 34(2): 251-260. doi: 10.6046/zrzyyg.2021205

基于多时相Sentinel-1A的沼泽湿地水面时空动态变化监测

  • 基金项目:

    国家自然科学基金项目”基于主被动遥感的沼泽植被群丛时空分布与水文情势耦合研究”(41801071)

    广西自然科学基金项目”基于主被动遥感的北部湾红树林群丛时空分布与水文情势耦合研究”(2018GXNSFBA281015)

    广西科技计划项目(桂科AD20159037)

    桂林理工大学科研启动基金资助项目(GUTQDJJ2017096)

    广西八桂学者团队专项经费

详细信息
    作者简介: 韦 嫦(1997-),女,硕士研究生,研究方向为遥感与地理信息集成应用。Email: 1056930549@qq.com
  • 中图分类号: TP79

Monitoring of spatial-temporal dynamic changes in water surface in marshes based on multi-temporal Sentinel-1A data

  • 水是形成和维系湿地生态系统的重要因子,监测湿地水面积变化对湿地保护研究具有重要意义。以2018—2019年逐月的Sentinel-1A卫星数据为数据源,计算扎龙湿地年内和年际的合成孔径雷达(synthetic aperture Radar,SAR)后向散射系数(σ0)和相干系数(μ0)影像,根据彩色光学影像水体贴近程度赋予权重并构建提取湿地水面σ0与μ0的加权影像,通过阈值分割法、随机森林算法提取湿地水体,实现湿地水域面积的动态变化监测,探究湿地水域年内和年际变化规律。结果表明: 基于随机森林算法的水体提取精度最高,代表月份平均差值绝对值为6.69 km2,基于μ0影像使用阈值分割方法的分类精度最低,平均差值绝对值为13.07 km2; 整体趋势上,扎龙湿地水域面积年内有明显的季节性变化,春末夏初时水域面积在1 300~1 600 km2浮动,夏末秋始时水域面积在700~900 km2浮动; 年际水域面积会随着气候、温度等条件差异有不同变化,2019年10月、11月因降水量大湿地水域面积比2018年多出约1 050 km2,基于有效数据计算,总体上2019年比2018年水域面积多出约550 km2。
  • 加载中
  • [1]

    马玥. 基于多源遥感信息综合的湿地土地覆被分类研究[D]. 长春: 吉林大学, 2018.[1] Ma Y. Land cover classification of wetland based on multi-source remote sensing[D]. Changchun: Jilin University, 2018.[2] 张鹏. 大庆市湿地动态变化分析[D]. 哈尔滨: 东北农业大学, 2018.[2] Zhang P. Dynamic change analysis of Daqing wetland[D]. Harbin: Northeast Agricultural University, 2018.[3] 刘言. 湿地水文连通机理与模式分析——以莫莫格国家级自然保护区为例[D]. 长春: 吉林大学, 2020.[3] Liu Y. Mechanism and pattern analysis of wetland hydrological connectivity:Taking Momoge National Natural as an example[D]. Changchun: Jilin University, 2020.[4] 王前进, 王希群, 陆诗雷, 等. 生态补偿的经济学理论基础及中国的实践[J]. 林业经济, 2019, 41(1):3-23.[4] Wang Q J, Wang X Q, Lu S L, et al. The basis of economic theory on the ecological compensation and its practice in China[J]. Forestry Economy, 2019, 41(1): 3-23.[5] 李丹, 吴保生, 陈博伟, 等. 基于卫星遥感的水体信息提取研究进展与展望[J]. 清华大学学报(自然科学版), 2020, 60(2):147-161.[5] Li D, Wu B S, Chen B W, et al. Review of water body information extraction based on satellite remote sensing[J]. Journal of Tsinghua University (Natural Science Edition), 2020, 60(2):147-161.[6] 甄佳宁. 基于多时相遥感的长春湿地动态变化研究[D]. 长春: 吉林大学, 2016.[6] Zhen J N. The research of wetland dynamic change in Changchun based on multi-temporal remote sensing[D]. Changchun: Jilin University, 2016.[7] Jin H R, Huang C Q, Megan W L, et al. Monitoring of wetland inundation dynamics in the Delmarva Peninsula using Landsat time-series imagery from 1985 to 2011[J]. Remote Sensing of Environment, 2017, 190:26-41. [8] 常文涛, 陈欢, 常伟纲. 结合时间序列Sentinel-1数据和面向对象的湿地信息提取方法[J]. 北京测绘, 2020, 34(3):365-370.[8] Chang W T, Chen H, Chang W G. Time series Sentinel-1 data and object-oriented wetland information extraction method[J]. Beijing Surveying and Mapping, 2020, 34(3):365-370.[9] 徐怡波. 基于ENVISAT ASAR数据的洞庭湖湿地遥感监测研究[D]. 南京: 南京林业大学, 2010.[9] Xu Y B. Study on the remote sensing monitoring of wetland in the Dongting Lake using ENVISAT ASAR data[D]. Nanjing: Nanjing Forestry University, 2010.[10] 付波霖, 蓝斐芜, 邓腾芳, 等. 基于DInSAR的洪河国家级自然保护区沼泽水位相对变化量监测研究[J]. 湿地科学, 2021, 19(1):27-39.[10] Fu B L, Lan F W, Deng T F, et al. Monitoring of relative variation of water level of marshes in Honghe National Nature Reserve using DInSAR technique[J]. Wetland Science, 2021, 19(1): 27-39.[11] 贺广均. 联合SAR与光学遥感数据的山区积雪识别研究[D]. 南京: 南京大学, 2015.[11] He G J. Snow recognition in mountain areas based on SAR and optical remote sensing data[D]. Nanjing: Nanjing University, 2015.[12] 关韵桐. 基于SAR与光学数据的高原湿地土壤水分反演研究[D]. 昆明: 云南师范大学, 2019.[12] Guan Y T. Inversion of soil moisture in plateau wetland based on SAR and optical data[D]. Kunming: Yunnan Normal University, 2019.[13] Mizuochia H, Hiyama T, Ohta T, et al. Development and evaluation of a lookup-table-based approach to data fusion for seasonal wetlands monitoring: An integrated use of AMSR series,MODIS,and Landsat[J]. Remote Sensing of Environment, 2017, 199: 370-388. [14] 常文涛, 王浩, 宁晓刚, 等. 融合Sentinel-2红边波段和Sentinel-1雷达波段影像的扎龙湿地信息提取[J]. 湿地科学, 2020, 18(1):10-19.[14] Chang W T, Wang H, Ning X G, et al. Extraction of Zhalong wetlands information based on images of Sentinel-2 red-edge bands and Sentinel-1 Radar bands[J]. Wetland Science, 2020, 18(1): 10-19.[15] 李哲, 宫兆宁, 刘先林, 等. 基于面向对象多端元混解模型的植被覆盖度反演及其时空分布研究[J]. 遥感技术与应用, 2018, 33(6):1149-1158.[15] Li Z, Gong Z N, Liu X L, et al. Vegetation coverage retrieval and spatio-temporal distribution based on object-oriented multi-terminal mixed model[J]. Remote Sensing Technology and Application, 2018, 33(6):1149-1158.[16] 刘瑶, 余自强, 范杰平, 等. 鄱阳湖丰水期水体后向散射特性研究[J]. 华中师范大学学报(自然科学版), 2019, 53(2):283-289.[16] Liu Y, Yu Z Q, Fan J P, et al. The characters of backscattering coefficient during flood period in Poyang Lake[J]. Journal of Central China Normal University (Natural Science Edition), 2019, 53(2):283-289.[17] 贾亮亮, 汪小钦, 王峰. 基于波段运算和纹理特征的高分一号多光谱数据云检测[J]. 遥感信息, 2018, 33(5):62-68.[17] Jia L L, Wang X Q, Wang F. Cloud detection based on band operation texture feature for GF-1 multispectral data[J]. Remote Sensing Information, 2018, 33(5):62-68.[18] 王婕. 基于分类导向的三维联合头部姿态估计与人脸关键点定位[D]. 合肥: 中国科学技术大学, 2017.[18] Wang J. Joint 3D head pose and face landmarks regression based on classification-guided method[D]. Hefei: University of Science and Technology of China, 2017.[19] Gudina L F, Henrik M, Rasmus F, et al. Automated water extraction index: A new technique for surface water mapping using Landsat imagery[J]. Remote Sensing of Environment, 2014, 140:23-35. [20] 王一帆, 徐涵秋. 基于客观阈值与随机森林Gini指标的水体遥感指数对比[J]. 遥感技术与应用, 2020, 35(5):1089-1098.

    [20] Wang Y F, Xu H Q. Comparison of remote sensing water indices based on objective threshold value and the random forest gini coefficient[J]. Remote Sensing Technology and Application, 2020, 35(5):1089-1098.

  • 加载中
计量
  • 文章访问数:  1211
  • PDF下载数:  66
  • 施引文献:  0
出版历程
收稿日期:  2021-06-30
刊出日期:  2022-06-20

目录