中国自然资源航空物探遥感中心主办
地质出版社出版

基于DS-InSAR的乌达煤田火区长时序地表形变监测与分析

李柱, 范洪冬, 高彦涛, 许耀宗. 2022. 基于DS-InSAR的乌达煤田火区长时序地表形变监测与分析. 自然资源遥感, 34(3): 138-145. doi: 10.6046/zrzyyg.2021245
引用本文: 李柱, 范洪冬, 高彦涛, 许耀宗. 2022. 基于DS-InSAR的乌达煤田火区长时序地表形变监测与分析. 自然资源遥感, 34(3): 138-145. doi: 10.6046/zrzyyg.2021245
LI Zhu, FAN Hongdong, GAO Yantao, XU Yaozong. 2022. DS-InSAR-based monitoring and analysis of a long time series of surface deformation in the fire area of the Wuda coal field. Remote Sensing for Natural Resources, 34(3): 138-145. doi: 10.6046/zrzyyg.2021245
Citation: LI Zhu, FAN Hongdong, GAO Yantao, XU Yaozong. 2022. DS-InSAR-based monitoring and analysis of a long time series of surface deformation in the fire area of the Wuda coal field. Remote Sensing for Natural Resources, 34(3): 138-145. doi: 10.6046/zrzyyg.2021245

基于DS-InSAR的乌达煤田火区长时序地表形变监测与分析

  • 基金项目:

    国家重点研发计划项目“矿区地表形变InSAR监测及地球物理模拟分析”(2017YFE0107100);国家自然科学基金项目“关闭矿井地表沉陷机理规律及预测方法研究”(51774270);“大形变梯度条件下时序TCP-InSAR监测矿区动态沉陷关键问题研究”(41604005);江苏省自然科学基金项目“顾及空间领域异质性的SAR影像自适应变化检测方法研究”(BK20190645)

详细信息
    作者简介: 李 柱(1998-),男,硕士研究生,主要从事InSAR技术应用研究。Email: lizhu@cumt.edu.cn
  • 中图分类号: TP79

DS-InSAR-based monitoring and analysis of a long time series of surface deformation in the fire area of the Wuda coal field

  • 煤火燃烧不仅浪费了大量煤炭资源,而且严重破坏了火区生态环境,而传统监测方法存在范围小、频率低、成本高、危险大等问题。为此,研究了一种基于分布式目标合成孔径雷达干涉测量(distributed scatterer interferometric synthetic aperture Radar,DS-InSAR)技术的煤田火区监测方法。该方法通过快速同质点识别算法(fast statistically homogeneous pixels selection,FaSHPS)选取同质点,然后利用特征值分解方法对这些同质点进行相位优化,并根据时间相干性获取最终的分布式目标,最后结合短基线集(small baseline subsets,SBAS)InSAR处理步骤解算时序地表形变。以2017年3月—2019年4月63景Sentinel-1A影像为数据源,利用本文方法获取了乌达煤田时序地表沉降,并与临时相干点合成孔径雷达干涉测量(temporarily coherent point interferometric synthetic aperture Radar,TCP-InSAR)技术监测结果进行了可靠性验证,结果表明: 两者间的相关系数为0.84,监测点位密度比TCP-InSAR提高1.24倍; 乌达煤田存在严重的地表形变现象,研究区域内最大形变速率为-215 mm/a; 煤火区在秋冬季节地表形变变化相对较快,且具有多个形变延伸方向及发育程度不同的沉降中心。
  • 加载中
  • [1]

    Song Z, Kuenzer C, Zhu H, et al. Analysis of coal fire dynamics in the Wuda syncline impacted by fire-fighting activities based on in-situ observations and Landsat8 remote sensing data[J]. International Journal of Coal Geology, 2015,141-142:91-102.

    [2]

    Kuenzer C, Zhang J, Sun Y, et al. Coal fires revisited:The Wuda coal field in the aftermath of extensive coal fire research and accelerating extinguishing activities[J]. International Journal of Coal Geology, 2012, 102:75-86

    [3]

    Liang Y, Liang H, Zhu S. Mercury emission from coal seam fire at Wuda,Inner Mongolia,China[J]. Atmospheric Environment, 2014, 83:176-184.

    [4]

    张志敏, 江利明, 柳林, 等. 利用Landsat热红外影像探测地下煤火区范围——以乌达煤田为例[J]. 测绘通报, 2018(3):93-97.

    [5]

    Zhang Z M, Jiang L M, Liu L, et al. Detecting the underground coal fire by using Landsat thermal infrared imagery:Taking Wuda coalfield as an example[J]. Bulletin of Surveying and Mapping, 2018(3):93-97.

    [6]

    Du X, Cao D, Mishra D, et al. Self-adaptive gradient-based thresholding method for coal fire detection using ASTER thermal infrared data,part I:Methodology and decadal change detection[J]. Remote Sensing, 2015, 7(6):6576-6610.

    [7]

    李峰, 梁汉东, 赵小平, 等. 内蒙古乌达煤田煤火治理效果的遥感监测与评估[J]. 国土资源遥感, 2017, 29(3):217-223.doi: 10.6046/gtzyyg.2017.03.32.

    [8]

    Li F, Liang H D, Zhao X P, et al. Remote sensing monitoring and assessment of fire-fighting effects in Wuda coal field,Inner Mongolia[J]. Remote Sensing for Land and Resources, 2017, 29(3):217-223.doi: 10.6046/gtzyyg.2017.03.32.

    [9]

    Li F, Li J, Liu X, et al. Coal fire detection and evolution of trend analysis based on CBERS-04 thermal infrared imagery[J]. Environmental Earth Sciences, 2020, 79(16):1-15.

    [10]

    蒋卫国, 武建军, 顾磊, 等. 基于夜间热红外光谱的地下煤火监测方法研究[J]. 光谱学与光谱分析, 2011, 31(2):357-361.

    [11]

    Jiang W G, Wu J J, Gu L, et al. Monitoring method of undergound coal fire based on nigth thermal infrared remote sensing technology[J]. Spectroscopy and Spectral Analysis, 2011, 31(2):357-361.

    [12]

    郑美楠, 邓喀中, 陈华, 等. 时序累积DInSAR与GIS结合的矿区沉降监测与分析[J]. 煤矿安全, 2017, 48(1):160-163.

    [13]

    Zheng M N, Deng K Z, Chen H, et al. Monitoring and analysis of mining subsidence base on timing accumulation DInSAR and GIS[J]. Safety in Coal Mines, 2017, 48(1):160-163.

    [14]

    赵立峰, 范洪冬, 渠俊峰, 等. 基于DS-InSAR的张双楼煤矿长时序地表形变监测方法[J]. 金属矿山, 2021(8):142-149.

    [15]

    Zhao L F, Fan H D, Qu J F, et al. Long time-series surface deformation method of Zhangshuanglou coal mine based on DS-InSAR[J]. Metal Mine, 2021(8):142-149.

    [16]

    Voigt S, Tetzlaff A, Zhang J, et al. Integrating satellite remote sensing techniques for detection and analysis of uncontrolled coal seam fires in North China[J]. Elsevier, 2004, 59(1-2):121-136.

    [17]

    Xu Y, Fan H, Dang L. Monitoring coal seam fires in Xinjiang using comprehensive thermal infrared and time series InSAR detection[J]. International Journal of Remote Sensing, 2021, 42(6):2220-2245.

    [18]

    Liu J, Wang Y, Yan S, et al. Underground coal fire detection and monitoring based on Landsat8 and Sentinel-1 data sets in Miquan fire area,Xinjiang[J]. Remote Sensing, 2021, 13(6):1141.

    [19]

    许怡, 范洪冬, 党立波. 基于TIRS和TCP-InSAR的新疆广域煤田火区探测方法[J]. 金属矿山, 2019(10):164-171.

    [20]

    Xu Y, Fan H D, Dang L B. Detection method of fire area in Xinjiang wide area coalfield based on TIRS and TCP-InSAR[J]. Metal Mine, 2019(10):164-171.

    [21]

    Liu J, Wang Y, Li Y, et al. Underground coal fires identification and monitoring using time-series InSAR with persistent and distributed scatterers:A case study of Miquan coal fire zone in Xinjiang,China[J]. IEEE Access, 2019, 7:164492-164506.

    [22]

    Riyas M, Syed T, Kumar H, et al. Detecting and analyzing the evolution of subsidence due to coal fires in Jharia coalfield,India using Sentinel-1 SAR data[J]. Remote Sensing, 2021, 13(8):1521.

    [23]

    Zhou L, Zhang D, Wang J, et al. Mapping land subsidence related to underground coal fires in the Wuda coalfield (Northern China) using a small stack of ALOS PALSAR differential interferograms[J]. Remote Sensing, 2013, 5(3):1152-1176.

    [24]

    黄昭权, 张登荣, 王帆, 等. 基于差分干涉SAR的煤田火区地表形变监测[J]. 国土资源遥感, 2010, 22(4):85-90.doi: 10.6046/gtzyyg.2010.04.18.

    [25]

    Huang Z Q, Zhang D R, Wang F, et al. Differential SAR interfero-metry for the monitoring of underground coal spontaneous combustion zone surface deformation[J]. Remote Sensing for Land and Resources, 2010, 22(4):85-90.doi: 10.6046/gtzyyg.2010.04.18.

    [26]

    Jiang L, Lin H, Ma J, et al. Potential of small-baseline SAR interferometry for monitoring land subsidence related to underground coal fires:Wuda (Northern China) case study[J]. Remote Sensing of Environment, 2011, 115(2):257-268.

    [27]

    Ferretti A, Fumagalli A, Novali F, et al. A new algorithm for processing interferometric data-stacks:SqueeSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9):3460-3470.

    [28]

    Jiang M, Ding X, Hanssen R F, et al. Fast statistically homogeneous pixel selection for covariance matrix estimation for multitemporal InSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 53(3):1213-1224.

    [29]

    Cao N, Lee H, Jung H C. Mathematical framework for phase-triangulation algorithms in distributed-scatterer interferometry[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(9):1838-1842.

    [30]

    张建明, 管海晏, 曹代勇, 等. 中国地下煤火研究与治理[M]. 北京: 煤炭工业出版社, 2008:12-21.

    [31]

    Zhang J M, Guan H Y, Cao D Y, et al. Underground coal fires in China:Origin,detection,fire-fighting,and prevention[M]. Beijing: China Coal Industry Publishing House, 2018:12-21.

  • 加载中
计量
  • 文章访问数:  498
  • PDF下载数:  78
  • 施引文献:  0
出版历程
收稿日期:  2021-08-12
修回日期:  2022-09-15
刊出日期:  2022-09-21

目录