PS-InSAR-based monitoring and analysis of surface subsidence in Shanghai
-
摘要: 城市地表沉降对人类生活影响越来越严重,有效监测地表沉降的方法研究显得尤为重要。为监测上海市的地表沉降状况,使用永久散射体干涉测量(permanent scatterer-interferometric synthetic aperture Radar,PS-InSAR)技术对2019—2020年24景覆盖上海地区的Sentinel-1A数据进行处理,然后使用SRTM1数字高程模型进行残差相位修正,提取了2 a的地表沉降结果。通过对监测结果的沉降速率和沉降累计量进行分析,表明上海市城区主要为不均匀地表沉降,主城区分布多个沉降漏斗,与历史沉降数据对比,个别沉降漏斗与上海市地表历史沉降漏斗数据相对应。通过随机选取地面特征点的地表沉降时序数据,可知地表沉降的形变量在各时间单位上基本一致,其变化趋势有较高的一致性,验证了PS-InSAR监测方法的可靠性。研究结果可为上海市地质灾害防治提供数据支撑和决策依据。Abstract: Urban surface subsidence has increasingly severe impacts on human life, making it particularly important to study the methods for effectively monitoring surface subsidence. To monitor the surface subsidence in Shanghai, this study processed 24 scenes of 2019—2020 Sentinel-1A data covering the city using the PS-InSAR technique. After treatment using the permanent scatterer interferometry technique, the residual phase correction was performed using SRTM1 DEM, and the surface subsidence results of the two years were extracted. The analysis of the subsidence rate and cumulative subsidence amplitude in the monitoring results shows that the urban area mainly shows uneven surface subsidence with multiple subsidence funnels, some of which correspond to the historical subsidence data. As shown by time-series surface subsidence data of seldomly selected ground characteristic points, the surface subsidence at these points basically had the same deformation amplitude at different times and highly consistent changing trends, verifying the reliability of the PS-InSAR monitoring method. The results of this study will provide data and decision-making bases for geologic disaster prevention and control in Shanghai.
-
Key words:
- surface subsidence /
- InSAR /
- PS-InSAR /
- Shanghai
-
-
[1] 张静, 冯东向, 綦巍, 等. 基于SBAS-InSAR技术的盘锦地区地面沉降监测[J]. 工程地质学报, 2018, 26(4):999-1007.
[2] Zhang J, Feng D X, Qi W, et al. Monitoring land subsidence in Panjin region with SBAS-InSAR method[J]. Journal of Engineering, 2018, 26(4):999-1007.
[3] 汪宝存, 朱琳, 潘登, 等. 郑州市地面沉降时空演变规律研究[J]. 国土资源遥感, 2020, 32(3):143-148.doi: 10.6046/gtzyyg.2020.03.19.
[4] Wang B C, Zhu L, Pan D, et al. Research on temporal and spatial evolution law of land subsidence in Zhengzhou[J]. Remote Sensing for Land and Resources, 2020, 32(3):143-148.doi: 10.6046/gtzyyg.2020.03.19.
[5] Yang Q, Ke Y H, Zhang D Y, et al. Multi-Scale analysis of the relationship between land subsidence and buildings:A case study in an eastern Beijing urban area using the PS-InSAR technique[J]. Remote Sensing, 2018, 10(7):1006.
[6] Lyu M Y, Ke Y H, Guo L, et al. Change in regional land subsidence in Beijing after south-to-north water diversion project observed using satellite Radar interferometry[J]. GIScience and Remote Sensing, 2020, 57(1):140-156.
[7] 袁悦. 基于SBAS-InSAR技术的海口地区地面沉降监测及机理分析[D]. 北京: 中国地质大学(北京), 2020.
[8] Yan Y. Ground subsidence monitoring and mechanism analysis in Haikou area based on SBAS-InSAR technology[D]. Beijing: China University of Geosciences(Beijing), 2020.
[9] 聂运菊, 刘国祥, 石金峰, 等. 基于PSI技术监测上海市2009年-2010年区域地表沉降[J]. 遥感信息, 2013, 28(2):56-61.
[10] Nie Y J, Liu G X, Shi J F, et al. Ground subsidence of Shanghai from 2009 to 2010 monitored by PSI technique[J]. Remote Sensing Information, 2013, 28(2):56-61.
[11] Ferretti A, Prati C, Rocca F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5):2202-2212.
[12] 高二涛, 范冬林, 付波霖. 基于PS-InSAR和SBAS技术监测南京市地面沉降[J]. 大地测量与地球动力学, 2019, 39(2):158-163.
[13] Gao E T, Fan D L, Fu B L. Land subsidence monitoring of Nanjing area based on PS-InSAR and SBAS technology[J]. Geodesy and Geodynamics, 2019, 39(2):158-163.
[14] 麻源源, 左小清, 麻卫峰. 基于PS-InSAR的天津地区沉降监测及分析[J]. 遥感技术与应用, 2019, 34(6):1324-1331.
[15] Ma Y Y, Zou X Q, Ma W F. Settlement monitoring and analysis of Tianjin area based on PS-InSAR[J]. Remote Sensing Technology and Application, 2019, 34(6):1324-1331.
[16] 刘欣, 商安荣. PS-InSAR和SBAS-InSAR在城市地表沉降监测中的应用对比[J]. 全球定位系统, 2016, 41(2):101-105.
[17] Liu X, Shang A R. Application contrast of PS-InSAR and SBAS-InSAR in urban surface subsidence monitoring[J]. GNSS World of China, 2016, 41(2):101-105.[11] 上海市统计局. 上海统计年鉴2020[M]. 北京: 中国统计出版社, 2020.[11] Shanghai Municipal Bureau of Statistics. Shanghai statistical yearbook 2020[M]. Beijing: China Statistics Press, 2020.
[18] Cigna F, Tapete D. Present-day land subsidence rates,surface faulting hazard and risk in Mexico City with 2014—2020 Sentinel-1 IW InSAR[J]. Remote Sensing of Environment, 2021, 253:1-19.
[19] 张兆旭. 基于PS-InSAR技术的高速铁路沉降监测研究[D]. 北京: 中国地质大学(北京), 2016.
[20] Zhang Z X. Research on settlement monitoring of high speed railway based on PS-InSAR technology[D]. Beijing: China University of Geosciences(Beijing), 2016.
[21] Dumka R K, SuriBabu D, Malik K, et al. PS-InSAR derived deformation study in the Kachchh,Western India[J]. Applied Computing and Geosciences, 2020, 8:1-8.
[22] 熊佳诚, 聂运菊, 罗跃, 等. 利用双极化Sentinel-1数据监测城市地面沉降——以上海市为例[J]. 测绘通报, 2019(11):98-102,129.
[23] Xiong J C, Nie Y J, Luo Y, et al. Monitoring urban land subsidence by dual-polarization Sentinel-1 data:A case study of Shanghai[J]. Bulletin of Surveying and Mapping, 2019(11):98-102,129.
[24] 史玉金. 上海地区地面沉降新特征及对重大市政设施影响研究[D]. 上海: 上海交通大学, 2018.
[25] Shi Y J. Recent characteristics of land subsidence in Shanghai and its effect on performance of key municipal facilities[D]. Shanghai: Shanghai Jiao Tong University, 2018.
[26] 朱菊艳. 沧州地区地面沉降成因机理及沉降量预测研究[D]. 北京: 中国地质大学(北京), 2014.
[27] Zhu J Y. Research on land subsidence mechanism and prediction of settlement in Cangzhou area[D]. Beijing: China University of Geosciences(Beijing), 2014.
-
计量
- 文章访问数: 1855
- PDF下载数: 153
- 施引文献: 0