Classification and detection of radiation anomalies in Chinese optical satellite images by integrating multi-scale features
-
摘要: 随着我国航天遥感事业的高速发展,国产民用光学遥感卫星种类不断丰富,光学影像数据量呈跨越式增长,对光学遥感影像传感器校正产品的业务化日常质量检查带来巨大挑战。在质量检验业务中,影像辐射异常检查是影像质量检验的关键环节之一,存在自动化检查技术能力缺失、人工参与多、效率低等问题。针对以上问题,提出了一种融合多尺度特征的辐射异常数据分类检测深度学习网络模型。该网络模型在EfficientNet-B0模型的基础上引入空洞空间卷积池化金字塔,通过设置不同大小的膨胀率,收集不同尺度下辐射异常数据特征,并将不同尺度上的特征进行通道拼接和池化卷积处理; 再与EfficientNet-B0模型提取出来的特征进行融合处理,以提高分类检测模型的精度。实验结果表明,所提出的分类检测模型,对光学影像辐射异常数据检测分类具有较高的分类精度,优于其他模型分类精度,将有助于提升遥感影像辐射质量检验的自动化水平。
-
关键词:
- EfficientNet /
- 深度学习 /
- 辐射异常 /
- 分类检测
Abstract: With the rapid development of China’s aerospace remote sensing industry, the types of Chinese civilian optical remote sensing satellites have continuously increased. Consequently, the data volume of optical images shows a leapfrogging growth. This brings huge challenges to the daily quality inspection of the calibration products for optical remote sensing image sensors. The inspection of image radiation anomalies is a key step in image quality inspection. However, the inspection faces many problems such as a lack of automated inspection technical capabilities, high manual participation, and low efficiency. To address the above problems, this study proposed a deep learning network model that integrates multi-scale features for the classification and detection of radiation anomaly data. This network model employed a hollow space convolutional pooling pyramid based on the EfficientNet-B0 model. The features of radiation anomaly data on different scales were collected by setting different expansion rates and then processed through channel splicing, pooling, and convolution. Furthermore, they were merged with the features extracted using the EfficientNet-B0 model to improve the precision of the classification and detection model. The experimental results show that the proposed classification and detection model has a higher classification precision for the detection and classification of radiation anomaly data of optical images than other models. Therefore, this study will help to improve the automation level of radiation quality inspection of remote sensing images.-
Key words:
- EfficientNet /
- deep learning /
- radiation anomaly /
- classification detection
-
-
[1] 李德仁. 论21世纪遥感与GIS的发展[J]. 武汉大学学报(信息科学版), 2003, 28(2):127-131.
[2] Li D R. Towards the development of remote sensing and GIS in the 21st century[J]. Geomatics and Information Science of Wuhan University, 2003, 28(2):127-131.
[3] 梁晓珩, 梁秀娟, 柯蓓. 我国遥感卫星系统发展进阶路径探讨[J]. 航天器环境工程, 2021, 38(1):100-105.
[4] Liang X H, Liang X J, Ke B. The development path of romote sensing satellite system in China[J]. Spacecraft Environment Engineering, 2021, 38(1):100-105.
[5] 廖小罕. 中国对地观测20年科技进步和发展[J]. 遥感学报, 2021, 25(1):267-275.
[6] Liao X H. Scientific and technological progress and development prospect of the earth observation in China in the past 20 years[J]. National Remote Sensing Bulletin, 2021, 25(1):267-275.
[7] 孙伟伟, 杨刚, 陈超, 等. 中国地球观测遥感卫星发展现状及文献分析[J]. 遥感学报, 2020, 24(5):479-510.
[8] Sun W W, Yang G, Chen C, et al. Development status and literature analysis of China’s earth observation remote sensing satellites[J]. Journal of Remote Sensing, 2020, 24(5):479-510.
[9] 许和鱼, 张黎明, 李鑫, 等. 基于太阳漫反射板线阵CCD相对辐射定标方法研究[J]. 光学学报, 2020, 40(6):179-187.
[10] Xu H Y, Zhang L M, Li X, et al. A relative radiometric calibration method based on solar diffuser research for a linear array CCD detector[J]. Acta Optica Sinica, 2020, 40(6):179-187.
[11] 曹红业, 张天棋. 基于辐射传输模型的高分二号影像大气校正方法研究[J]. 红外技术, 2020, 42(6):534-541.
[12] Cao H Y, Zhang T Q. Atmospheric correction algorithm for GF-2 image based on a radiative transfer model[J]. Infrared Technology, 2020, 42(6):534-541.
[13] He K, Zhang X, Ren S, et al. Deep residual learning for image reco-gnition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016:770-778.
[14] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[C]// The 3rd International Conference on Learning Representations (ICLR2015), 2015:1-14.
[15] 胡杰, 张莹, 谢仕义. 国产遥感影像分类技术应用研究进展综述[J]. 计算机工程与应用, 2021, 57(3):1-13.
[16] Hu J, Zhang Y, Xie S Y. Summary of research progress on application of domestic remote sensing image classification technology[J]. Computer Engineering and Applications, 2021, 57(3):1-13.
[17] 周培诚, 程塨, 姚西文, 等. 高分辨率遥感影像解译中的机器学习范式[J]. 遥感学报, 2021, 25(1):182-197.
[18] Zhou P C, Cheng G, Yao X W, et al. Machine learning paradigms in high-resolution remote sensing image interpretation[J]. National Remote Sensing Bulletin, 2021, 25(1):182-197.
[19] 谭琨, 王雪, 杜培军. 结合深度学习和半监督学习的遥感影像分类进展[J]. 中国图象图形学报, 2019, 24(11):1823-1841.
[20] Tan K, Wang X, Du P J. Research progress of the remote sensing classification combining deep learning and semi-supervised learning[J]. Journal of Image and Graphics, 2019, 24(11):1823-1841.
[21] 王智敏, 谭海, 郭正胜, 等. 基于CNN的高分辨率遥感影像多级云检测[J]. 测绘与空间地理息, 2020, 43(9):139-142,145,151.
[22] Wang Z M, Tan H, Guo Z S, et al. Multi-level cloud detection in high-resolution remote sensing images based on CNN[J]. Geomatics and Spatial Information Technology, 2020, 43(9):139-142,145,151.
[23] 蔡之灵, 翁谦, 叶少珍, 等. 基于Inception-V3模型的高分遥感影像场景分类[J]. 国土资源遥感, 2020, 32(3):80-89.doi:10.6046/gtzyyg.2020.03.11.
[24] Cai Z L, Weng Q, Ye S Z, et al. Remote sensing image scene classification based on Inception-V3[J]. Remote Sensing for Land and Resources, 2020, 32(3):80-89.doi:10.6046/gtzyyg.2020.03.11.
[25] Tan M, Le Q V. EfficientNet:Rethinking model scaling for convolutional neural networks[C]// International Conference on Machine Learning.Long Beach, USA:ICML, 2019:6105-6114.
[26] Wang K R, Yu X B. MobileNet and EfficientNet demonstration on Google landmark recognition dataset[J]. International Core Journal of Engineering, 2021, 7(3):313-319.
[27] 张敏, 赵雪青. 基于EfficientNets的织物疵点图像分类方法[J]. 纺织高校基础科学学报, 2020, 33(4):64-70.
[28] Zhang M, Zhao X Q. EfficientNets-based method for fabric defect image classification[J]. Basic Sciences Journal of Textile Universities, 2020, 33(4):64-70.
[29] 赵鹏菲, 黄丽佳. 一种基于EfficientNet与BiGRU的多角度SAR图像目标识别方法[J]. 雷达学报, 2021, 10(6):895-904.
[30] Zhao P F, Huang L J. Target recognition method for multi-aspect synthetic aperture Radar images based on EfficientNet and BiGRU[J]. Journal of Radars, 2021, 10(6):895-904.
[31] Duong L T, Nguyen P T, Sipio C D, et al. Automated fruit recognition using EfficientNet and MixNet[J]. Computers and Electronics in Agriculture, 2020, 171:105326.
[32] 宝音图, 刘伟, 牛朝阳, 等. 联合集成学习与EfficientNet的光学遥感图像场景分类[J]. 计算机工程, 2021, 47(10):226-235.
[33] Bao Y T, Liu W, Niu C Y, et al. Scene classification of optical remote sensing images joint ensemble learning and EfficientNet[J]. Computer Engineering, 2021, 47(10):226-235.
[34] Chen L C, Papandreou G, Kokkinos I, et al. DeepLab:Semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848.
-
计量
- 文章访问数: 287
- PDF下载数: 94
- 施引文献: 0