中国自然资源航空物探遥感中心主办
地质出版社出版

基于遥感和深度学习的输电线路地表水深预测

张可, 张庚生, 王宁, 温静, 李宇, 杨俊. 2023. 基于遥感和深度学习的输电线路地表水深预测. 自然资源遥感, 35(1): 213-221. doi: 10.6046/zrzyyg.2021450
引用本文: 张可, 张庚生, 王宁, 温静, 李宇, 杨俊. 2023. 基于遥感和深度学习的输电线路地表水深预测. 自然资源遥感, 35(1): 213-221. doi: 10.6046/zrzyyg.2021450
ZHANG Ke, ZHANG Gengsheng, WANG Ning, WEN Jing, LI Yu, YANG Jun. 2023. A forecasting method for water table depths in areas with power transmission lines based on remote sensing and deep learning models. Remote Sensing for Natural Resources, 35(1): 213-221. doi: 10.6046/zrzyyg.2021450
Citation: ZHANG Ke, ZHANG Gengsheng, WANG Ning, WEN Jing, LI Yu, YANG Jun. 2023. A forecasting method for water table depths in areas with power transmission lines based on remote sensing and deep learning models. Remote Sensing for Natural Resources, 35(1): 213-221. doi: 10.6046/zrzyyg.2021450

基于遥感和深度学习的输电线路地表水深预测

  • 基金项目:

    国家电网公司总部科技项目“无人区输电线路全景物联网络技术及共享型智慧感知平台研究”(5500-202140127A)

详细信息
    作者简介: 张可(1983-),男,高级工程师,主要从事电气自动化及人工智能应用研究。zhangke2@sgepri.sgc
  • 中图分类号: TP79

A forecasting method for water table depths in areas with power transmission lines based on remote sensing and deep learning models

  • 近年来很多输电线路区域受到洪水灾害的影响,因此,预测输电线区域地表水深对于输电线区域安全至关重要。本研究通过遥感卫星产品、观测气象资料和水文数据来预测地表水深。该研究首先利用长短期记忆网络(long short-term memory,LSTM)、门控循环单元网络(gated recurrent unit,GRU)、编码器和解码器的长短期记忆网络(long short-term memory-seq2seq,LSTM-S2S)和前馈神经网络(feedforward neural network,FFNN)模型针对气象资料和水文数据进行了日和月尺度数据模拟。结果表明,在4个模型中,LSTM-S2S是预测地表水深的最佳模型; 相比之下,FFNN的表现最差; LSTM,GRU和LSTM-S2S模型在日和月尺度数据模拟中均表现良好。在LSTM,GRU和LSTM-S2S模型中,日尺度模拟的决定系数(coefficient of determination,R2)和纳什效率系数(Nash-Sutcliffe efficiency coefficient,NSE)均优于月尺度。因此,本研究中的方法可以用来模拟未来电力传输线地区的日和月尺度的地表水深。
  • 加载中
  • [1]

    Wang J, Shi P, Jiang P, et al. Application of BP neural network algorithm in traditional hydrological model for flood forecasting[J]. Water, 2017, 9:48.

    [2]

    Batelaan O, De Smedt F, Triest L, et al. Regional groundwater discharge:Phreatophyte mapping,groundwater modelling and impact analysis of land-use change[J]. Journal of Hydrology, 2003, 275:86-108.

    [3]

    Bhattacharjee N V, Tollner E W, et al. Improving management of windrow composting systems by modeling runoff water quality dynamics using recurrent neural network[J]. Ecological Modelling, 2016, 339:68-76.

    [4]

    Kratzert F, Klotz D, Brenner C, et al. Rainfall-runoff modelling using Long Short-Term Memory (LSTM) networks[J]. Hydrology and Earth System Sciences, 2018, 22:6005-6022.

    [5]

    Schmidhuber J. Deep learning in neural networks:An overview[J]. Neural Networks, 2015, 61:85-117.

    [6]

    Halevy A, Norvig P, Pereira F. The unreasonable effective-ness of data[J]. IEEE Intelligent Systems, 2009, 24(2):8-12.

    [7]

    Zhang J, Zhu Y, Zhang X, et al. Developing a long short-term memory (LSTM) based model for predicting water table depth in agricultural areas[J]. Journal of Hydrology, 2018, 561:918-929.

    [8]

    Kao I, Zhou Y, Chang L, et al. Exploring a long short-term memory based encoder-decoder framework for multi-step-ahead flood forecasting[J]. Journal of Hydrology, 2020, 583:124631.

    [9]

    Xiang Z, Yan J, Demir I, et al. A rainfall runoff model With LSTM based sequence to sequence learning[J]. Water Resources Research, 2020, 56:1-17.

    [10]

    Shen Y, Xiong A Y, Wang Y, et al. Performance of high-resolution satellite precipitation products over China[J]. Journal of Geophysical Research, 2010, 115:1-17.

    [11]

    Rumelhart D E, Hinton G E, Williams R J, et al. Learning representations by back-propagating errors[J]. Nature, 1986, 323:533-536.

    [12]

    Hochreiter S. The vanishing gradient problem during learning recurrent neural nets and problem solutions[J]. International Journal of Uncertainty Fuzziness and Knowledge-based Systems, 1998, 6:107-116.

    [13]

    Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9 (8):1735-1780.

    [14]

    GersF A, Schmidhuber J, Cummins F, et al. Learning to forget:Continual prediction with LSTM[J]. Neural Computation, 2000, 12:2451-2471.

    [15]

    Cho K, van Merrienboer B, Bahdanau D, et al. On the properties of neural machine translation:Encoder-decoder approaches[J]. In Proceedings of SSST-8,Eighth Workshop on Syntax,Semantics and Structure in Statistical Translation, 2014,103-111.

    [16]

    Gao S, Huang Y, Zhang S, et al. Short-term runoff prediction with GRU and LSTM networks without requiring time step optimization during sample generation[J]. Journal of Hydrology, 2020:125188,doi:https://doi.org/10.1016/j.jhydrol.2020.125188.

  • 加载中
计量
  • 文章访问数:  450
  • PDF下载数:  90
  • 施引文献:  0
出版历程
收稿日期:  2021-12-20
修回日期:  2023-03-15
刊出日期:  2023-03-20

目录