中国自然资源航空物探遥感中心主办
地质出版社出版

基于遥感的雄安新区古水系网重构与城镇规划关系研究

孙禧勇, 李晶晶, 张瑞江, 王绍强, 冀欣阳, 李光玮. 2023. 基于遥感的雄安新区古水系网重构与城镇规划关系研究. 自然资源遥感, 35(1): 132-139. doi: 10.6046/zrzyyg.2022003
引用本文: 孙禧勇, 李晶晶, 张瑞江, 王绍强, 冀欣阳, 李光玮. 2023. 基于遥感的雄安新区古水系网重构与城镇规划关系研究. 自然资源遥感, 35(1): 132-139. doi: 10.6046/zrzyyg.2022003
SUN Xiyong, LI Jingjing, ZHANG Ruijiang, WANG Shaoqiang, JI Xinyang, LI Guangwei. 2023. Paleodrainage network in the Xiong’an New Area: Remote sensing-based reconstruction and relationship with town planning. Remote Sensing for Natural Resources, 35(1): 132-139. doi: 10.6046/zrzyyg.2022003
Citation: SUN Xiyong, LI Jingjing, ZHANG Ruijiang, WANG Shaoqiang, JI Xinyang, LI Guangwei. 2023. Paleodrainage network in the Xiong’an New Area: Remote sensing-based reconstruction and relationship with town planning. Remote Sensing for Natural Resources, 35(1): 132-139. doi: 10.6046/zrzyyg.2022003

基于遥感的雄安新区古水系网重构与城镇规划关系研究

  • 基金项目:

    中国地质调查局项目“全国矿山开发及重点地区生态空间遥感监测”(202012000000210017)

详细信息
    作者简介: 孙禧勇(1984-),男,博士研究生,主要研究方向为土地遥感和地质遥感。Email: 83359177@qq.com
  • 中图分类号: TP79

Paleodrainage network in the Xiong’an New Area: Remote sensing-based reconstruction and relationship with town planning

  • 雄安新区是具有全国意义的新区,其地下水位埋深较浅,包气带和饱水带之间水分交换十分密切,地下水的向上补给增大了土壤中水分含量。据此,该文以遥感影像为数据源,首先对研究区进行面向对象的土地分类,掩模提取植被信息,从而对植被区域利用温度植被干旱指数(temperature vegetation dryness index,TVDI)提取土壤水分信息,结合该区域古河道地质地貌特征和目视解译,识别了研究区内的古河道,并进行野外实地验证,对雄安新区古水系进行重构。结果表明: 该方法可以有效地提取研究区古水系信息; 研究区现今地表水体分布与古水系分布具有较大差异; 比较土地分类结果与古水系解译结果发现,古水系分布区域多集中在现今的建筑用地,这些建筑用地在遥感影像上表现为农村居民点。以古水系区域分别设置50 m,100 m,200 m缓冲区,并与土地分类结果进行相交分析。结果表明,在缓冲区域内的建筑用地占地面积占比相较全区域建筑用地占地面积占比明显增加,表明古水系分布与村落存在一定的相关性。
  • 加载中
  • [1]

    赵艳霞, 徐全洪, 刘芳圆, 等. 近20年来中国古河道研究进展[J]. 地理科学进展, 2013, 32(1):3-19.

    [2]

    Zhao Y X, Xu Q H, Liu F Q, et al. Progresses of palaeochannel studies in China in the past 20 years[J]. Progress in geographical science, 2013, 32(1):3-19.

    [3]

    王俊, 李家存, 张迪. 基于多源遥感数据的古河道识别方法——以磴口地区古黄河河道为例[J]. 首都师范大学学报(自然科学版), 2019, 40(1):70-77.

    [4]

    Wang J, Li J C, Zhang D. Identification of ancient river channels based on multi-source remote sensing data——Take the ancient Yellow River channel in Dengkou Area as an example[J]. Journal of Capital Normal University (Natural Science Edition), 2019, 40(1):70-77.

    [5]

    孟广文, 金凤君, 李国平, 等. 雄安新区:地理学面临的机遇与挑战[J]. 地理研究, 2017, 36(6):1003-1013.

    [6]

    Meng G W, Jin F J, Li G P, et al. Xiong’an New Area:Opportunities and challenges facing geography[J]. Geographical Research, 2017, 36 (6):1003-1013.

    [7]

    于长春, 乔日新, 张迪硕. 雄安新区航磁推断的三维基底构造特征[J]. 物探与化探, 2017, 41(3):385-391.

    [8]

    Yu C C, Qiao R X, Zhang D S. Three dimensional basement structural characteristics inferred by aeromagnetic in Xiong’an New Area[J]. Geophysical and Geochemical Exploration, 2017, 41(3):385-391.

    [9]

    孙禧勇, 苗菁, 于航, 等. 基于多源遥感数据的雄安新区近40年城镇扩展分析[J]. 创新科技, 2018, 18(2):22-26.

    [10]

    Sun X Y, Miao J, Yu H, et al. Analysis of urban expansion in Xiong’an New Area in recent 40 years based on multi-source remote sensing data[J]. Innovative Technology, 2018, 18 (2):22-26.

    [11]

    吴忱. 河北平原的地面古河道[J]. 地理学报, 1984,(3):268-276.

    [12]

    Wu C. Surface paleodrainage in Hebei Plain[J]. Journal of Geography, 1984 (3):268-276.

    [13]

    吕霞, 陈蕾, 韩锋, 等. 莱芜市牟汶河利用古水系兴建平原水库工程[J]. 中国水运, 2011, 11(8):188-189.

    [14]

    Lv X, Chen L, Han F, et al. Muwen River in Laiwu City uses ancient water system to build plain reservoir project[J]. China Water Transportation, 2011, 11 (8):188-189.

    [15]

    Almulla S T, Albadran B N, Al-Ali A. Application of remote sensing techniques to map the paleochannels of Shatt Al-Arab and Khor Al-Zubair,southern Iraq[J]. Marsh Bulletin, 2011, 6(1):23-31.

    [16]

    张福堂. 永定河冲积扇及古河道在卫星图象上的显示特征[J]. 水文地质工程地质, 1986(1):54-53.

    [17]

    Zhang F T. Display characteristics of Yongding River alluvial fan and ancient channel on satellite image[J]. Hydrogeology and Engineering Geology, 1986(1):54-53.

    [18]

    Samadder R K, Kumar S, Gupta R P. Paleochannels and their potential for artificial groundwater recharge in the western Ganga plains[J]. Journal of Hydrology, 2011, 400(1-2):154-164.

    [19]

    张竞, 马震, 吴爱民, 等. 基于岩性光谱特征的雄安新区地面古水系识别研究[J]. 地球学报, 2018, 39(5):542-548.

    [20]

    Zhang J, Ma Z, Wu A M, et al. Recognition of surface paleodrainage system in Xiong’an New Area based on lithologic spectral characteristics[J]. Acta Geosciences, 2018, 39(5):542-548.

    [21]

    秦磊, 詹华明, 宋小军, 等. 基于遥感技术的静海县浅埋古水系分析[J]. 地质调查与研究, 2008, 31(4):321-327.

    [22]

    Qin L, Zhan H M, Song X J, et al. Analysis of shallow buried ancient water system in Jinghai County based on remote sensing technology[J]. Geological Survey and Research, 2008, 31(4):321-327.

    [23]

    吴爱琴, 刘春迎. 北宋东京城的桥梁建筑特色及影响[J]. 河南大学学报(社会科学版), 2002(3):63-67.

    [24]

    Wu A Q, Liu C Y. Bridge architectural characteristics and influence of Tokyo City in the Northern Song Dynasty[J]. Journal of Henan University (Social Science Edition), 2002(3):63-67.

    [25]

    高超, 王心源, 金高洁, 等. 巢湖西湖岸新石器—商周遗址空间分布规律及其成因[J]. 地理研究, 2009, 28(4):979-989.

    [26]

    Gao C, Wang X Y, Jin G J, et al. Spatial distribution features of archaeological sites (Neolithic Age to Shang & Zhou Dynasties) on the western shore of the Chaohu Lake,China[J]. Geographical Research, 2009, 28(4):979-989.

    [27]

    王凯霖, 李海涛, 吴爱民, 等. 人工补水条件下白洋淀湿地演变研究[J]. 地球学报, 2018, 39(5):40-49.

    [28]

    Wang K L, Li H T, Wu A M, et al. Study on the evolution of Baiyangdian Wetland under artificial water replenishment[J]. Acta Geosciences, 2018, 39(5):40-49.

    [29]

    周莹. 雄安新区4万年以来古环境演化研究[D]. 北京: 中国地质大学(北京), 2020.

    [30]

    Zhou Y. Study on the evolution of Paleoenvironment in Xiong’an New Area since 40000 years[D]. Beijing: China University of Geosciences (Beijing), 2020.

    [31]

    吴忱, 朱宣清, 何乃华, 等. 华北平原古河道的形成研究[J]. 中国科学(B辑化学生命科学地学), 1991(2):188-197.

    [32]

    Wu C, Zhu X Q, He N H, et al. Study on the formation of ancient river channels in North China Plain[J]. Science of China (Part B,Chemistry,Life Sciences and Geosciences), 1991(2):188-197.

    [33]

    晏红波, 周国清. 地表土壤湿度光学遥感反演方法研究进展[J]. 亚热带资源与环境学报, 2017, 12(2):82-89,95.

    [34]

    Yan H B, Zhou G Q. Research progress of optical remote sensing inversion methods for surface soil moisture[J]. Journal of Subtropical Resources and Environment, 2017, 12(2):82-89,95.

    [35]

    谭衢霖, 刘正军, 沈伟. 一种面向对象的遥感影像多尺度分割方法[J]. 北京交通大学学报, 2007(4):111-114,119.

    [36]

    Tan Q L, Liu Z J, Shen W. An object-oriented multi-scale segmentation method for remote sensing images[J]. Journal of Beijing Jiaotong University, 2007(4):111-114,119.

    [37]

    王杰. 基于面向对象分类和CNN的土地覆盖遥感提取[D]. 合肥: 安徽大学, 2020.

    [38]

    Wang J. Remote sensing extraction of land cover based on object-oriented classification and CNN[D]. Hefei: Anhui University, 2020.

    [39]

    汤玲英. 基于面向对象方法的Sentinel数据在水体提取中的应用[D]. 长沙: 湖南师范大学, 2018.

    [40]

    Tang L Y. Application of sentinel data based on object-oriented method in water extraction[D]. Changsha: Hunan Normal University, 2018.

    [41]

    范辽生, 姜纪红, 盛晖, 等. 利用温度植被干旱指数(TVDI)方法反演杭州伏旱期土壤水分[J]. 中国农业气象, 2009, 30(2):230-234.

    [42]

    Fan L S, Jiang J H, Sheng H, et al. Inversion of soil moisture during summer drought in Hangzhou by temperature vegetation drought index (TVDI)[J]. China Agrometeorology, 2009, 30(2):230-234.

    [43]

    方旭辉. 大清河水系变迁及其对雄安新区建设的影响[D]. 保定: 河北农业大学, 2019.

    [44]

    Fang X H. Changes of Daqing River system and its impact on the construction of Xiong’an New Area[D]. Baoding: Hebei Agricultural University, 2019.

    [45]

    毛欣, 刘林敬, 宋磊, 等. 白洋淀近70年生态环境演化过程及影响因素[J]. 地球科学, 2021, 46(7):2609-2620.

    [46]

    Mao X, Liu L J, Song L, et al. Evolution process and influencing factors of ecological environment in Baiyangdian in recent 70 years[J]. Earth science, 2021, 46(7):2609-2620.

    [47]

    孙禧勇, 许玮, 姜德才, 等. 基于遥感的雄安新区地表水时序变化与区域规划研究[J]. 地球物理学进展, 2021, 36(4):1443-1455.

    [48]

    Sun X Y, Xu W, Jiang D C, et al. Study on temporal change of surface water and regional planning in Xiong’an New Area based on remote sensing[J]. Advances in geophysics, 2021, 36(4):1443-1455.

  • 加载中
计量
  • 文章访问数:  739
  • PDF下载数:  114
  • 施引文献:  0
出版历程
收稿日期:  2022-01-04
修回日期:  2023-03-15
刊出日期:  2023-03-20

目录