中国自然资源航空物探遥感中心主办
地质出版社出版

基于几何与属性匹配的地理信息数据融合更新方法

石善球. 2023. 基于几何与属性匹配的地理信息数据融合更新方法. 自然资源遥感, 35(1): 251-257. doi: 10.6046/zrzyyg.2022006
引用本文: 石善球. 2023. 基于几何与属性匹配的地理信息数据融合更新方法. 自然资源遥感, 35(1): 251-257. doi: 10.6046/zrzyyg.2022006
SHI Shanqiu. 2023. A geographic data fusion and update method based on geometric and attribute matching. Remote Sensing for Natural Resources, 35(1): 251-257. doi: 10.6046/zrzyyg.2022006
Citation: SHI Shanqiu. 2023. A geographic data fusion and update method based on geometric and attribute matching. Remote Sensing for Natural Resources, 35(1): 251-257. doi: 10.6046/zrzyyg.2022006

基于几何与属性匹配的地理信息数据融合更新方法

  • 基金项目:

    江苏省自然资源科技项目“面向国土空间决策支持的智慧江苏时空大数据情势分析”(2020035)

详细信息
    作者简介: 石善球(1980-),男,教授级高级工程师,主要从事测绘地理信息数据处理研究。Email: 6919368@qq.com
  • 中图分类号: P208

A geographic data fusion and update method based on geometric and attribute matching

  • 针对多源地理信息数据在尺度、几何位置和属性等方面存在不一致性而造成难以融合更新这一现状,探讨了一种基于几何与属性匹配技术的地理信息数据融合更新方法。该方法首先通过广义Voronoi图获取候选集,有效地提高候选集的获取效率并减少不相关目标对候选集的影响; 接着,基于几何和属性匹配等关键技术实现点、线、面3种不同几何类型数据的匹配分析; 最后,基于匹配结果从参考地理信息数据中提取增量数据,并完成目标数据的融合更新。实验结果表明,采用几何与属性匹配的地理信息数据融合更新方法,能够高效识别并提取增量数据,对监测数据更新模式的创新探索有一定的借鉴意义。
  • 加载中
  • [1]

    公海燕. 地理信息软件的技术进阶与应用创新[J]. 中国测绘, 2020(10):61-63.

    [2]

    Gong H Y. Technology advancement and application innovation of geographic information software[J]. China Surveying and Mapping, 2020(10):61-63.

    [3]

    胡菡, 张亮, 石婷婷. 多源地理要素变化识别研究[J]. 地理空间信息, 2020, 18(6):53-55,7.

    [4]

    Hu H, Zhang L, Shi T T. Research on the change of multi-source geographical elements[J]. Geospatial Information, 2020, 18(6):53-55,7.

    [5]

    李倩. 我国将构建自然资源统一调查监测体系[J]. 国土资源, 2018(8):14-15.

    [6]

    Li Q. China will build a unified survey and monitoring system for natural resources[J]. Land and Resources, 2018(8):14-15.

    [7]

    王峰, 安晓亚, 朱璇. 地理空间数据增量更新版本化管理方法研究[J]. 地理空间信息, 2021, 19(2):26-29,6.

    [8]

    Wang F, An X Y, Zhu X. Research on versioning management method for incremental update of geospatial data[J]. Geospatial Information, 2021, 19(2):26-29,6.

    [9]

    杨灿, 汪齐松. 多源地理矢量空间数据融合研究[J]. 测绘通报, 2019(12):112-115.

    [10]

    Yang C, Wang Q S. Research on multi-source geospatial spatial data fusion[J]. Bulletin of Surveying and Mapping, 2019(12):112-115.

    [11]

    孙群. 空间数据相似性研究的若干基本问题[J]. 测绘科学技术学报, 2013, 30(5):439-442.

    [12]

    Sun Q. Research on some fundamental issues of spatial data similarity[J]. Journal of Geomatics Science and Technology, 2013, 30(5):439-442.

    [13]

    安晓亚, 孙群, 肖强, 等. 一种形状多级描述方法及在多尺度空间数据几何相似性度量中的应用[J]. 测绘学报, 2011, 40(4):495-501,508.

    [14]

    An X Y, Sun Q, Xiao Q, et al. A shape multilevel description method and application in measuring geometry similarity of multi-scale spatial data[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(4):495-501,508.

    [15]

    程钢, 卢小平. 顾及通名语义的汉语地名相似度匹配算法[J]. 测绘学报, 2014, 43(4):404-410,418.

    [16]

    Cheng G, Lu X P. Matching algorithm for chinese place names by similarity in consideration of semantics of general names for places[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(4):404-410,418.

    [17]

    刘海龙, 钱海忠, 黄智深, 等. 采用Stroke层次结构模型的道路网匹配方法[J]. 测绘科学技术学报, 2013, 30(6):647-651,657.

    [18]

    Liu H L, Qian H Z, Huang Z S, et al. Road network matching method with stroke-hierarchical model[J]. Journal of Geomatics Science and Technology, 2013, 30(6):647-651,657.

    [19]

    孙群. 多源矢量空间数据融合处理技术研究进展[J]. 测绘学报, 2017, 46(10):1627-1636.

    [20]

    Sun Q. Research on the progress of multi-sources geospatial vector data fusion[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1627-1636.

    [21]

    万洋洋. 基于Voronoi图的多尺度面状居民地匹配方法研究[D]. 南昌: 江西师范大学, 2016:23-26.

    [22]

    Wan Y Y. The matching method based on Voronoi diagram for multi-scale polygonal residential areas[D]. Nanchang: Jiangxi Normal University, 2016:23-26.

    [23]

    张桥平, 李德仁, 龚健雅. 地图合并技术[J]. 测绘通报, 2001(7):6-8.

    [24]

    Zhang Q P, Li D R, Gong J Y. Map conflation[J]. Bulletin of Surveying and Mapping, 2001(7):6-8.

    [25]

    程绵绵, 孙群, 季晓林, 等. 改进平均Fréchet距离法及在化简评价中的应用[J]. 测绘科学, 2020, 45(3):170-177.

    [26]

    Cheng M M, Sun Q, Ji X L, et al. An improved average Fréchet distance method and application in simplification evaluation[J]. Science of Surveying and Mapping, 2020, 45(3):170-177.

    [27]

    邹静, 陈永刚, 龚金琪, 等. 一种利用多维目标分割比的矢量图形匹配算法[J]. 武汉大学学报(信息科学版), 2020, 45(10):1626-1632.

    [28]

    Zou J, Chen Y G, Gong J Q, et al. An efficient matching algorithm based on vector graphics using multi-dimensional object segmentation ratio[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10):1626-1632.

    [29]

    吴建华. 矢量空间数据实体匹配方法与应用研究[D]. 武汉: 武汉大学, 2008.

    [30]

    Wu J H. Research on methods of entity matching and its application in vector spatial data[D]. Wuhan: Wuhan University, 2008.

    [31]

    郝燕玲, 唐文静, 赵玉新. 等. 基于空间相似性的面实体匹配算法研究[J]. 测绘学报, 2008, 37(4):501-506.

    [32]

    Hao Y L, Tang W J, Zhao Y X. et al. Areal feature matching algorithm based on spatial similarity[J]. Acta Geodaetica et Cartographica Sinica, 2008, 37(4):501-506.

    [33]

    刘善磊, 潘九宝, 李梦梦. 等. 多源地理信息数据匹配质量评价研究[J]. 地理空间信息, 2022, 20(1):118-121,9.

    [34]

    Liu S L, Pan J B, Li M M. et al. Research on quality evaluation of multi-source geographic information data matching[J]. Geospatial Information, 2022, 20(1):118-121,9.

  • 加载中
计量
  • 文章访问数:  930
  • PDF下载数:  210
  • 施引文献:  0
出版历程
收稿日期:  2022-01-05
修回日期:  2023-03-15
刊出日期:  2023-03-20

目录