中国自然资源航空物探遥感中心主办
地质出版社出版

面向高分辨率遥感影像车辆检测的深度学习模型综述及适应性研究

吕雅楠, 朱红, 孟健, 崔成玲, 宋其淇. 2022. 面向高分辨率遥感影像车辆检测的深度学习模型综述及适应性研究. 自然资源遥感, 34(4): 22-32. doi: 10.6046/zrzyyg.2022010
引用本文: 吕雅楠, 朱红, 孟健, 崔成玲, 宋其淇. 2022. 面向高分辨率遥感影像车辆检测的深度学习模型综述及适应性研究. 自然资源遥感, 34(4): 22-32. doi: 10.6046/zrzyyg.2022010
LYU Yanan, ZHU Hong, MENG Jian, CUI Chengling, SONG Qiqi. 2022. A review and adaptability study of deep learning models for vehicle detection based on high-resolution remote sensing images. Remote Sensing for Natural Resources, 34(4): 22-32. doi: 10.6046/zrzyyg.2022010
Citation: LYU Yanan, ZHU Hong, MENG Jian, CUI Chengling, SONG Qiqi. 2022. A review and adaptability study of deep learning models for vehicle detection based on high-resolution remote sensing images. Remote Sensing for Natural Resources, 34(4): 22-32. doi: 10.6046/zrzyyg.2022010

面向高分辨率遥感影像车辆检测的深度学习模型综述及适应性研究

  • 基金项目:

    河北省自然科学基金项目“面向凝视卫星视频图像超分辨率重建的智能化车辆检测方法研究”(D2020512001)

    中央高校基本科研业务费项目“基于凝视卫星视频图像的超分辨率重建研究”(ZY20200202)

    廊坊市科学技术研究与发展计划自筹经费项目“面向多级金字塔式非线性细节提升的超分辨率重建研究”(2021013164)

详细信息
    作者简介: 吕雅楠(1997-),男,硕士研究生,主要从事遥感图像识别方面的研究。Email: 13835436519@163.com
  • 中图分类号: P237

A review and adaptability study of deep learning models for vehicle detection based on high-resolution remote sensing images

  • 车辆检测问题是计算机视觉和摄影测量与遥感领域的研究热点。随着深度学习技术的发展,遥感影像车辆检测已在智慧城市和智能交通等领域展开应用。文章系统归纳了现有的基于深度学习模型的遥感影像车辆检测算法,着重从单阶段与双阶段的车辆检测算法进行了归类、分析及比较; 重点梳理了大幅面、复杂背景环境下车辆检测的关键技术,分析主流深度学习模型应用于遥感影像车辆检测的优缺点。利用DOTA和DIOR数据集对YOLOv5,Faster-RCNN,FCOS和SSD算法进行评估,在DOTA数据集上,车辆检测精度分别为0.695,0.410,0.370和0.251; 在DIOR数据集上,车辆检测精度分别为0.566,0.243,0.231和0.154。实验结果表明,目标尺度较小仍是制约遥感影像车辆检测性能的主要因素,深度学习模型应用于小目标检测存在较大的提升空间。最后,基于公开数据集与已有研究算法分析的基础上,给出大幅面复杂背景下遥感影像车辆检测的解决方法及发展趋势。
  • 加载中
  • [1]

    刘金明. 基于深度卷积神经网络的遥感图像中车辆检测方法研究[D]. 开封: 河南大学, 2020.

    [2]

    Liu J M. Research on vehicle detection method in remote sensing images based on deep convolution neural network[D]. Kaifeng: Henan University, 2020.

    [3]

    刘天颖, 李文根, 关佶红. 基于深度学习的光学遥感图像目标检测方法综述[J]. 无线电通信技术, 2020, 46(6):624-634.

    [4]

    Liu T Y, Li W G, Guan J H. Deep learning based object detection in optical remote sensing images:A survey[J]. Radio Communications Technology, 2020, 46(6):624-634.

    [5]

    Cheng G, Han J. A survey on object detection in optical remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 117:11-28.

    [6]

    成喆, 吕京国, 白颖奇, 等. 结合RPN网络与SSD算法的遥感影像目标检测算法[J]. 测绘科学, 2021, 46(4):75-82,99.

    [7]

    Cheng Z, Lyu J G, Bai Y Q, et al. High-resolution remote sensing image object detection algorithm combining RPN network and SSD algorithm[J]. Science of Surveying and Mapping, 2021, 46(4):75-82,99.

    [8]

    Alam M, Wang J F, Cong G, et al. Convolutional neural network for the semantic segmentation of remote sensing images[J]. Mobile Networks and Applications, 2021, 26:200-215.

    [9]

    Ji H, Gao Z, Mei T, et al. Vehicle detection in remote sensing images leveraging on simultaneous super-resolution[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(4):676-680.

    [10]

    张昭, 姚国愉, 李雪纯, 等. 基于改进Faster R-CNN算法的小目标车辆检测[J]. 科技创新与应用, 2021(4):28-32.

    [11]

    Zhang Z, Yao G Y, Li X C, et al. Small target vehicle detection based on improved Faster-RCNN algorithm[J]. Science and Technology Innovation and Application, 2021(4):28-32.

    [12]

    Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.IEEE, 2014:580-587.

    [13]

    南晓虎, 丁雷. 深度学习的典型目标检测算法综述[J]. 计算机应用研究, 2020(s2):15-21.

    [14]

    Nan X H, Ding L. Overview of typical object detection algorithms based on deep learning[J]. Application Research of Computers, 2020(s2):15-21.

    [15]

    Girshick R. Fast R-CNN[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.IEEE, 2015:1440-1448.

    [16]

    Ren S, He K, Girshick R, et al. Faster R-CNN:Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.

    [17]

    罗峰. 基于超分辨率迁移学习的遥感图像车辆检测[D]. 厦门: 厦门大学, 2017.

    [18]

    Luo F. Vehicle detection in remote sensing images based on super-resolution transfer learning[D]. Xiamen: Xiamen University, 2017.

    [19]

    Deng Z P, Hao S, Zhou S L, et al. Toward fast and accurate vehicle detection in aerial images using coupled region-based convolutional neural networks[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(8):3652-3664.

    [20]

    Liu K, Mattyus G. Fast multiclass vehicle detection on aerial images[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(9):1938-1942.

    [21]

    王雪, 隋立春, 李顶萌, 等. 区域卷积神经网络用于遥感影像车辆检测[J]. 公路交通科技, 2018, 35(3):103-108.

    [22]

    Wang X, Sui L C, Li D M, et al. Regional convolutional neural network for vehicle detection in remote sensing images[J]. Journal of Electronics and Information Technology, 2018, 35(3):103-108.

    [23]

    高鑫, 李慧, 张义, 等. 基于可变形卷积神经网络的遥感影像密集区域车辆检测方法[J]. 电子与信息学报, 2018, 40(12):2812-2819.

    [24]

    Gao X, Li H, Zhang Y, et al. Vehicle detection in remote sensing images of dense areas based on deformable convolution neural network[J]. Journal of Electronics and Information Technology, 2018, 40(12):2812-2819.

    [25]

    阳理理. 基于人工神经网络的遥感图像车辆检测[D]. 南宁: 广西大学, 2018.

    [26]

    Yang L L. Vehicle detection based on artificial neural network in remote sensing images[D]. Nanning: Guangxi University, 2018.

    [27]

    孙秉义. 基于遥感图像处理的交通量检测与分析[D]. 上海: 上海交通大学, 2019.

    [28]

    Sun B Y. Traffic volume detection and analysis based on remote sensing images processing[D]. Shanghai: Shanghai Jiaotong University, 2019.

    [29]

    Xia G S, Bai X, Ding J, et al. DOTA:A large-scale dataset for object detection in aerial images[C]// 2018 IEEE Conference on Computer Vision and Pattern Recognition.IEEE, 2018:3974-3983.

    [30]

    黄国捷. 基于深度学习的遥感图像车辆目标检测[D]. 苏州: 苏州大学, 2019.

    [31]

    Huang G J. Vehicle target detection from remote sensing images based on deep learning[D]. Suzhou: Soochow University, 2019.

    [32]

    Ji H, Gao Z, Mei T, et al. Improved Faster R-CNN with multiscale feature fusion and homography augmentation for vehicle detection in remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(11):1761-1765.

    [33]

    Rottensteiner F, Sohn G, Jung J, et al. The ISPRS benchmark on urban object classification and 3D building reconstruction[J]. ISPRS Annals of Photogrammetry,Remote Sensing and Spatial Information Sciences, 2012,1-3:293-298.

    [34]

    Razakarivony S, Jurie F. Vehicle detection in aerial imagery:A small target detection benchmark[J]. Journal of Visual Communication and Image Representation, 2016, 34:187-203.

    [35]

    Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(4):640-651.

    [36]

    梁哲恒, 黎宵, 邓鹏, 等. 融和多尺度特征注意力的融合遥感影像变化检测方法[J]. 测绘学报, 2022, 51(5):668-676.

    [37]

    Liang Z H, Li X, Deng P, et al. Remote sensing images change detection fusion method integrating multi-scale feature attention[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5):668-676.

    [38]

    Yang X, Sun H, Sun X, et al. Position detection and direction prediction for arbitrary-oriented ships via multitask rotation region convolutional neural network[J]. IEEE Access, 2018, 6:50839-50849.

    [39]

    Fu Y, Wu F, Zhao J. Context-Aware and depth wise-based detection on orbit for remote sensing image[C]// 2018 24th International Conference on Pattern Recognition(ICPR).IEEE, 2018:1725-1730.

    [40]

    Li Q, Mou L, Xu Q, et al. R3-Net:A deep network for multioriented vehicle detection in aerial images and videos[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7):5028-5042.

    [41]

    Zhang Z H, Guo W W, Zhu S N, et al. Toward arbitrary-oriented ship detection with rotated region proposal and discrimination networks[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(11):1745-1749.

    [42]

    林钊. 基于深度学习的遥感图像舰船目标检测与识别[D]. 长沙: 国防科技大学, 2018.

    [43]

    Lin Z. Ship detection and recognition in remote sensing images based on deep learning[D]. Changsha: National University of Defense Technology, 2018.

    [44]

    刘万军, 高健康, 曲海成, 等. 多尺度特征增强的遥感图像舰船目标检测[J]. 自然资源遥感, 2021, 33(3):97-106.doi:10.6046/zrzyyg.2020372.

    [45]

    Liu W J, Gao J K, Qu H C, et al. Ship detection based on multi-scale feature enhancement of remote sensing images[J]. Remote Sensing for Natural Resources, 2021, 33(3):97-106.doi:10.6046/zrzyyg.2020372.

    [46]

    许德刚, 王露, 李凡. 深度学习的典型目标检测算法研究综述[J]. 计算机工程与应用, 2021, 57(8):10-25.

    [47]

    Xu D G, Wang L, Li F. A review of typical object detection algorithms based on deep learning[J]. Computer Engineering and Applications, 2021, 57(8):10-25.

    [48]

    Redmon J, Divvala S, Girshick R, et al. You only look once:Unified,real-time object detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.IEEE, 2016:779-788.

    [49]

    Redmon J, Farhadi A. YOLO9000:Better,faster,stronger[C]// IEEE Conference on Computer Vision and Pattern Recognition.IEEE, 2017:6517-6525.

    [50]

    Redmon J, Farhadi A. YOLOv3:An incremental improvement[EB/OL].(2019-12-25)[2021-12-29]. https://arxiv.org/abs/1804.02767 .

    [51]

    Bochkovskiy A, Wang C Y, Liao H. YOLOv4:Optimal speed and accuracy of object detection[EB/OL].(2020-04-23)[2021-12/29]. https://arxiv.org/abs/2004.10934 .

    [52]

    Liu W, Anguelov D, Erhan D, et al. SSD:Single shot multibox detector[J]. Springer,Cham, 2016, 9905:21-37.

    [53]

    Fu C, Liu W, Ranga A, et al. DSSD:Deconvolutional single shot detector[EB/OL].(2017-01-23)[2021-12/29]. https://arxiv.org/abs/1701.06659v1 .

    [54]

    Tian Z, Shen C H, Chen H, et al. FCOS:Fully convolutional one-stage object detection[C]// 2019 IEEE/CVF International Conference on Computer Vision(ICCV).IEEE, 2020:9626-9635.

    [55]

    李圣琀, 邵峰晶. 基于深度学习的轻量遥感图像车辆检测模型[J]. 工业控制计算机, 2020, 33(6):66-69.

    [56]

    Li S H, Shao F J. Vehicle detection model of light weight remote sensing image based on deep learning[J]. Industrial Control Computer, 2020, 33(6):66-69.

    [57]

    Etten A V. You only look twice:Rapid multi-scale object detection in satellite imagery[EB/OL].(2018-05-24)[2021-12-29]. https://arxiv.org/abs/1805.09512 .

    [58]

    彭新月, 张吴明, 钟若飞. 改进YOLOv3模型的GF-2卫星影像车辆检测[J]. 测绘科学, 2021, 46(12):147-154.

    [59]

    Peng X Y, Zhang W M, Zhong R F. GF-2 satellite image vehicle detection based on improved YOLOv3 model[J]. Science of Surveying and Mapping, 2021, 46(12):147-154.

    [60]

    汤田玉. 基于深度学习的高分辨率光学遥感影像车辆目标检测方法研究[D]. 长沙: 国防科技大学, 2017.

    [61]

    Tang T Y. Deep convolutional neural network based vehicle detection methods on high resolution optical remote sensing images[D]. Changsha: National University of Defense Technology, 2017.

    [62]

    侯涛, 蒋瑜. 改进YOLOv4在遥感飞机目标检测中的应用研究[J]. 计算机工程与应用, 2021, 57(12):224-230.

    [63]

    Hou T, Jiang Y. Resrarch of improved YOLOv4 in remote sensing aircraft target detection[J]. Computer Engineering and Applications, 2021, 57(12):224-230.

    [64]

    赵鹏飞, 谢林柏, 彭力. 融合注意力机制的深层次小目标检测算法[J]. 计算机科学与探索, 2022, 16(4):927-937.

    [65]

    Zhao P F, Xie L B, Peng L. A deep small target detection algorithm based on attention mechanism[J]. Computer Science and Technolo-gy, 2022, 16(4):927-937.

    [66]

    王明阳, 王江涛, 刘琛. 基于关键点的遥感图像旋转目标检测[J]. 电子测量与仪器学报, 2021, 35(6):102-108.

    [67]

    Wang M Y, Wang J T, Liu C. Detection of rotating targets in remote sensing images based on key points[J]. Journal of Electronic Measurement and Instrument, 2021, 35(6):102-108.

    [68]

    唐建宇, 唐春晖. 基于旋转框和注意力机制的遥感图像目标检测算法[J]. 电子测量技术, 2021, 44(13):114-120.

    [69]

    Tang J Y, Tang C H. Remote sensing image target detection algorithm based on rotating frame and attention mechanism[J]. Electronic Measurement Technique, 2021, 44(13):114-120.

    [70]

    陈俊. 基于R-YOLO的多源遥感图像海面目标融合检测算法研究[D]. 武汉: 华中科技大学, 2019.

    [71]

    Chen J. Research on maritime target fusion detection in multi-source remote sensing images based on R-YOLO[D]. Wuhan: Huazhong University of Science and Technology, 2019.

    [72]

    谢俊章, 彭辉, 唐健峰, 等. 改进YOLOv4的密集遥感目标检测[J]. 计算机工程与应用, 2021, 57(22):247-256.

    [73]

    Xie J Z, Peng H, Tang J F, et al. Improved YOLOv4 for dense remote sensing target detection[J]. Computer Engineering and Applications, 2021, 57(22):247-256.

    [74]

    杨治佩, 丁胜, 张莉, 等. 无锚点的遥感图像任意角度密集目标检测方法[J]. 计算机应用, 2022, 42(6):1965-1971.

    [75]

    Yang Z P, Ding S, Zhang L, et al. An arbitrary angle dense target detection method for remote sensing images without anchor points[J]. Computer Application, 2022, 42(6):1965-1971.

    [76]

    张宏群, 班勇苗, 郭玲玲, 等. 基于YOLOv5的遥感图像舰船的检测方法[J]. 电子测量技术, 2021, 44(8):87-92.

    [77]

    Zhang H Q, Ban Y M, Guo L L, et al. Remote sensing images ship detection method based on YOLOv5[J]. Electronic Measurement Technology, 2021, 44(8):87-92.

    [78]

    张玉莲. 光学图像海面舰船目标智能检测与识别方法研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2021.

    [79]

    Zhang Y L. Research on intelligent detection and recognition metho-ds of ship targets on the sea surface in optical images[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics,Fine Mechanics and Physics,CAS), 2021.

    [80]

    Li K, Wan G, Cheng G, et al. Object detection in optical remote sensing images:A survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159:296-307.

  • 加载中
计量
  • 文章访问数:  1341
  • PDF下载数:  162
  • 施引文献:  0
出版历程
收稿日期:  2022-01-12
修回日期:  2022-12-15
刊出日期:  2022-12-27

目录