中国自然资源航空物探遥感中心主办
地质出版社出版

基于改进YOLOv4-tiny的无人机影像枯死树木检测算法

金远航, 徐茂林, 郑佳媛. 2023. 基于改进YOLOv4-tiny的无人机影像枯死树木检测算法. 自然资源遥感, 35(1): 90-98. doi: 10.6046/zrzyyg.2022018
引用本文: 金远航, 徐茂林, 郑佳媛. 2023. 基于改进YOLOv4-tiny的无人机影像枯死树木检测算法. 自然资源遥感, 35(1): 90-98. doi: 10.6046/zrzyyg.2022018
JIN Yuanhang, XU Maolin, ZHENG Jiayuan. 2023. A dead tree detection algorithm based on improved YOLOv4-tiny for UAV images. Remote Sensing for Natural Resources, 35(1): 90-98. doi: 10.6046/zrzyyg.2022018
Citation: JIN Yuanhang, XU Maolin, ZHENG Jiayuan. 2023. A dead tree detection algorithm based on improved YOLOv4-tiny for UAV images. Remote Sensing for Natural Resources, 35(1): 90-98. doi: 10.6046/zrzyyg.2022018

基于改进YOLOv4-tiny的无人机影像枯死树木检测算法

  • 基金项目:

    国家重点研发计划项目“金属非金属矿山重大灾害治灾机理及防控技术研究”(2016YFC0801600)

详细信息
    作者简介: 金远航(1997-),男,硕士研究生,主要研究方向为深度学习、图像处理、摄影测量与遥感。Email: yhjin2@126.com
  • 中图分类号: TP751

A dead tree detection algorithm based on improved YOLOv4-tiny for UAV images

  • 针对目前枯死树木检测主要依赖人工实地勘察,容易受到森林地形限制、勘察效率低、易发生危险等问题,提出一种引进注意力机制及空间金字塔池化的YOLOv4-tiny枯死树木检测算法。首先,该方法在模型的Backbone部分后引入空间金字塔池化(spatial pyramid pooling,SPP)结构,融合局部和全局特征,丰富模型的特征表达能力; 其次,使用ELU替换模型中原激活函数LeakyReLU,使得激活函数单侧饱和,能够更好地收敛,提升模型鲁棒性; 最后,将注意力机制ECANet引入模型中,加强网络对图像中重要信息的学习,提升网络的性能。实验利用无人机采集辽南某风景区山林的树木影像,并使用不同模型对其中枯死树木进行检测。通过实验结果表明,改进算法检测精度达到93.25%,相比于YOLOv4-tiny,YOLOv4,SSD和文献[8]算法,精度分别提升9.58%,12.57%,10.54%和4.87%,能够较好地实现对于枯死树木的检测。
  • 加载中
  • [1]

    Kamińska A, Lisiewicz M, Stereńczak K, et al. Species-related single dead tree detection using multi-temporal ALS data and CIR imagery[J]. Remote Sensing of Environment, 2018, 219:31-43.

    [2]

    毕凯, 李英成, 丁晓波, 等. 轻小型无人机航摄技术现状及发展趋势[J]. 测绘通报, 2015(3):27-31,48.

    [3]

    Bi K, Li Y C, Ding X B, et al. Aerial photogrammetric technology of light small UAV:Status and trend of development[J]. Bulletin of Surveying and Mapping, 2015(3):27-31,48.

    [4]

    汪沛, 罗锡文, 周志艳, 等. 基于微小型无人机的遥感信息获取关键技术综述[J]. 农业工程学报, 2014, 30(18):1-12.

    [5]

    Wang P, Luo X W, Zhou Z Y, et al. Key technology for remote sensing information acquisition based on micro UAV[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(18):1-12.

    [6]

    Kamińska A, Lisiewicz M, K Stereńczak, et al. Species-related single dead tree detection using multi-temporal ALS data and CIR imagery[J]. Remote Sensing of Environment, 2018, 219:31-43.

    [7]

    Manandhar A, Hoegner L, Stilla U. Palm tree detection using circular autocorrelation of polar shape matrix[J]. ISPRS Annals of Photogrammetry,Remote Sensing and Spatial Information Sciences, 2016, 3:465-472.

    [8]

    宋以宁, 刘文萍, 骆有庆, 等. 基于线性谱聚类的林地图像中枯死树监测[J]. 林业科学, 2019, 55(4):187-195.

    [9]

    Song Y N, Liu W P, Luo Y Q, et al. Monitoring of dead trees in forest images based on linear spectral clustering[J]. Scientia Silvae Sinicae, 2019, 55(4):187-195.

    [10]

    Culman M, Delalieux S, Van Tricht K. Individual palm tree detection using deep learning on RGB imagery to support tree inventory[J]. Remote Sensing, 2020, 12(21):3476.

    [11]

    王新彦, 吕峰, 易政洋. 基于深度学习的草坪树木检测方法研究[J]. 中国农机化学报, 2021, 42(7):136-141.

    [12]

    Wang X Y, Lyu F, Yi Z Y. Research on lawn tree detection method based on deep learning[J]. Journal of Chinese Agricultural Mechanization, 2021, 42(7):136-141.

    [13]

    Yu R, Luo Y, Zhou Q, et al. Early detection of pine wilt disease using deep learning algorithms and UAV-based multispectral imagery[J]. Forest Ecology and Management, 2021, 497:119493.

    [14]

    李海滨, 孙远, 张文明, 等. 基于YOLOv4-tiny的溜筒卸料煤尘检测方法[J]. 光电工程, 2021, 48(6):73-86.

    [15]

    Li H B, Sun Y, Zhang W M, et al. The detection method for coal dust caused by chute discharge based on YOLOv4-tiny[J]. Opto-Electronic Engineering, 2021, 48(6):73-86.

    [16]

    Bochkovskiy A, Wang C Y, Liao H Y M. YOLOv4:Optimal speed and accuracy of object detection[J]. Computer Vision and Pattern Recognition, 2020, 17(9):198-215.

    [17]

    Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017:2117-2125.

    [18]

    He K, Zhang X, Ren S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9):1904-1916.

    [19]

    Clevert D A, Unterthiner T, Hochreiter S. Fast and accurate deep network learning by exponential linear units (ELUS)[C]// Proceedings of the 4th International Conference on Learning Representations.ICLR, 2015:375-387.

    [20]

    Wang Q, Wu B, Zhu P, et al. ECA-Net:Efficient channel attention for deep convolutional neural networks[C]// CVF Conference on Computer Vision and Pattern Recognition.Seattle.IEEE, 2020:11531-11539.

    [21]

    Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018:7132-7141.

    [22]

    赵杰伦, 张兴忠, 董红月. 基于尺度不变特征金字塔的输电线路缺陷检测[J]. 计算机工程与应用, 2022, 58(8):289-296.

    [23]

    Zhao J L, Zhang X Z, Dong H Y. Defect detection in transmission line based on scale-invariant feature pyramid networks[J]. Computer Engineering and Applications, 2022, 58(8):289-296.

    [24]

    Everingham M, Van Gool L, Williams C K I, et al. The pascal visual object classes (voc) challenge[J]. International Journal of Computer Vision, 2010, 88(2):303-338.

    [25]

    郭晓征, 姚云军, 贾坤, 等. 基于U-Net深度学习方法火星沙丘提取研究[J]. 自然资源遥感, 2021, 33(4):130-135.doi:10.6046/zrzyyg.2020397.

    [26]

    Guo X Z, Yao Y J, Jia K, et al. Information extraction of Mars dunes based on U-Net[J]. Remote Sensing for Natural Resources, 2021, 33(4):130-135.doi:10.6046/zrzyyg.2020397.

  • 加载中
计量
  • 文章访问数:  1363
  • PDF下载数:  86
  • 施引文献:  0
出版历程
收稿日期:  2022-01-12
修回日期:  2023-03-15
刊出日期:  2023-03-20

目录