中国自然资源航空物探遥感中心主办
地质出版社出版

密集特征哈希的遥感场景分类

李国祥, 夏国恩, 白丽明, 马文斌. 2023. 密集特征哈希的遥感场景分类. 自然资源遥感, 35(1): 66-73. doi: 10.6046/zrzyyg.2022028
引用本文: 李国祥, 夏国恩, 白丽明, 马文斌. 2023. 密集特征哈希的遥感场景分类. 自然资源遥感, 35(1): 66-73. doi: 10.6046/zrzyyg.2022028
LI Guoxiang, XIA Guo’en, BAI Liming, MA Wenbin. 2023. Remote sensing image classification based on DenseNet feature hashing. Remote Sensing for Natural Resources, 35(1): 66-73. doi: 10.6046/zrzyyg.2022028
Citation: LI Guoxiang, XIA Guo’en, BAI Liming, MA Wenbin. 2023. Remote sensing image classification based on DenseNet feature hashing. Remote Sensing for Natural Resources, 35(1): 66-73. doi: 10.6046/zrzyyg.2022028

密集特征哈希的遥感场景分类

  • 基金项目:

    国家自然科学基金资助项目“网络客户特征分析与流失预测研究”(71862003)

    “大容量图像可逆信息隐藏理论与方法研究”(62162006)

    广西高校中青年教师基础能力提升资助项目“基于特征混合编码的遥感场景分类研究”(2021KY0650)

详细信息
    作者简介: 李国祥(1984-),男,硕士,副教授,主要研究方向为模式识别、人工智能。Email: masterlgx@163.com
  • 中图分类号: TP393

Remote sensing image classification based on DenseNet feature hashing

  • 针对遥感场景的精准分类,提出了密集网络特征哈希的场景分类算法。基于密集网络输出的高层语义特征,经全连接层过渡降维后,激活函数生成归一化的特征向量作为分类层的判断输入,形成端到端的分类网络。训练后的网络作为特征提取器,将测试数据激活层特征映射生成二值哈希码,最后采用支持向量机分类。所提出的算法分别在UC Merced,WHU和NWPU-RESISC45公开数据集进行了验证,分别与传统局部特征描述子、迁移学习、深度特征编码3个层次的多种算法进行了对比,实验结果表明,相比于传统中低层语义特征,分类准确度得到大幅度提高; 相比于深度学习网络的迁移,密集特征映射表达精细,聚集影像核心类别判断要素,更符合遥感影像的特征分布; 相比于深度特征编码算法,特征结构简单,分类精度高,迁移和拓展性强,可以满足不同遥感场景分类要求。
  • 加载中
  • [1]

    Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[C]// Proceedings of the International Conference on Neural Information Processing Systems. Lake Tahoe: NIPS, 2012:1097-1105.

    [2]

    He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016:770-778.

    [3]

    Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu:IEEE, 2017:4700-4708.

    [4]

    Wang G, Fan B, Xiang S, et al. Aggregating rich hierarchical features for scene classification in remote sensing imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(9):4104-4115.

    [5]

    Razavian A S, Sullivan J, Carlsson S, et al. Visual instance retrieval with deep convolutional networks[J]. ITE Transactions on Media Technology and Applications, 2016, 4(3):251-258.

    [6]

    Zheng L, Yang Y, Tian Q. SIFT meets CNN:A decade survey of instance retrieval[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2018, 40(5):1224-1244.

    [7]

    Hu F, Xia G S, Hu J, et al. Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery[J]. Remote Sensing, 2015, 7(11):14680-14707.

    [8]

    Cheng G, Li Z, Yao X, et al. Remote sensing image scene classification using bag of convolutional features[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10):1735-1739.

    [9]

    王鑫, 李可, 宁晨, 等. 基于深度卷积神经网络和多核学习的遥感图像分类方法[J]. 电子与信息学报, 2019, 41(5):1098-1105.

    [10]

    Wang X, Li K, Ning C, et al. Remote sensing image classification method based on deep convolution neural network and multi-kernel learning[J]. Journal of Electronics & Information Technology, 2019, 41(5):1098-1105.

    [11]

    He N, Fang L, Li S, et al. Remote sensing scene classification using multilayer stacked covariance pooling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(12):6899-6910.

    [12]

    Cheng G, Yang C, Yao X, et al. When deep learning meets metric learning:Remote sensing image scene classification via learning discriminative CNNs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(5):2811-2821.

    [13]

    刘异, 庄姊琪, 闫利, 等. 联合Fisher核编码和卷积神经网络的影像场景分类[J]. 遥感信息, 2018, 33(4):8-15.

    [14]

    Liu Y, Zhuang Z Q, Yan L, et al. Combined Fisher kernel coding framework with convolutional neural network for remote sensing scene classification[J]. Remote Sensing Information, 2018, 33(4):8-15.

    [15]

    余东行, 张保明, 赵传, 等. 联合卷积神经网络与集成学习的遥感影像场景分类[J]. 遥感学报, 2020, 24(6):717-727.

    [16]

    Yu D H, Zhang B M, Zhao C, et al. Scene classification of remote sensing image using ensemble convolutional neural network[J]. Journal of Remote Sensing, 2020, 24(6):717-727.

    [17]

    李亚飞, 董红斌. 基于卷积神经网络的遥感图像分类研究[J]. 智能系统学报, 2018, 13(4):550-556.

    [18]

    Li Y F, Dong H B. Classification of remote-sensing image based on convolutional neural network[J]. CAAI Transactions on Intelligent Systems, 2018, 13(4):550-556.

    [19]

    张哲益, 曹卫华, 朱蕊, 等. 基于脉冲卷积神经网络稀疏表征的高分辨率遥感图像场景分类方法[J]. 控制与决策, 2022, 37(9):2305-2313.

    [20]

    Zhang Z Y, Cao W H, Zhu R, et al. Sparse representation with spike convolutional neural networks for scene classification of remote sensing images of high resolution[J]. Control and Decision, 2022, 37(9):2305-2313.

    [21]

    Selvaraju R R, Cogswell M, Das A, et al. Grad-cam:Visual explanations from deep networks via gradient-based localization[C]// Proceedings of the IEEE International Conference on Computer Vision. Venice:IEEE, 2017:618-626.

    [22]

    Lin K, Yang H F, Hsiao J H, et al. Deep learning of binary hash codes for fast image retrieval[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Boston:IEEE, 2015:27-35.

    [23]

    Lazebnik S, Schmid C, Ponce J. Beyond bags of features:Spatial pyramid matching for recognizing natural scene categories[C]// 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06). New York: IEEE, 2006:2169-2178.

    [24]

    Arandjelovic R, Zisserman A. All about VLAD[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Portland:IEEE, 2013:1578-1585.

    [25]

    李国祥, 马文斌, 王继军. 稠密特征编码的遥感场景分类算法[J]. 小型微型计算机系统, 2021, 42(4):766-772.

    [26]

    Li G X, Ma W B, Wang J J. Remote sensing image classification based on dense feature coding[J]. Journal of Chinese Computer Systems, 2021, 42(4):766-772.

    [27]

    Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J/OL]. arxiv, 2014[2022-04-24]. https://arxiv.org/pdf/1409.1556.pdf.

    [28]

    Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston:IEEE, 2015:1-9.

    [29]

    Arandjelovic R, Gronat P, Torii A, et al. NetVLAD:CNN architecture for weakly supervised place recognition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016:5297-5307.

    [30]

    Lin T, Roychowdhury A, Maji S. Bilinear convolutional neural networks for fine-grained visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(6):1309-1322.

    [31]

    Sánchez J, Perronnin F, Mensink T, et al. Image classification with the fisher vector:Theory and practice[J]. International Journal of Computer Vision, 2013, 105(3):222-245.

  • 加载中
计量
  • 文章访问数:  776
  • PDF下载数:  69
  • 施引文献:  0
出版历程
收稿日期:  2022-01-21
修回日期:  2023-03-15
刊出日期:  2023-03-20

目录