An adversarial learning-based unsupervised domain adaptation method for semantic segmentation of high-resolution remote sensing images
-
摘要: 语义分割模型在高分辨率遥感影像中表现良好的关键是训练集和测试集之间域的高度一致。然而,不同数据集之间存在域偏差,包括地理位置、传感器成像方式和天气条件的差异,导致在一个数据集上训练的模型在另一个数据集上预测时准确性会显著下降。域自适应是解决上述问题的有效策略,该文从域自适应模型的角度,基于对抗学习方法提出了一种用于高分辨率遥感图像语义分割任务的无监督域自适应框架。该框架对全局域对齐模块和局部域对齐模块分别融入熵值加权注意力和逐类别域特征聚合机制,缓解源域和目标域之间的域偏差; 此外,引入了对象上下文表征(object context representation, OCR)模块和空洞空间金字塔池化(atrous spatial pyramid pooling, ASPP)模块,以充分利用影像中的空间级和对象级上下文信息,并提出了OCR/ASPP双分类器组合策略,以提高分割精度和准确性。实验结果表明,该方法在公开的2个数据集中实现了优越的跨域分割性能,并超过了同类型的其他方法。
-
-
计量
- 文章访问数: 47
- PDF下载数: 7
- 施引文献: 0