中国自然资源航空物探遥感中心主办
地质出版社出版

基于GRACE与InSAR数据地下水变化与地面沉降滞后性研究

魏小强, 杨国林, 刘涛, 邵明, 马志刚. 2025. 基于GRACE与InSAR数据地下水变化与地面沉降滞后性研究. 自然资源遥感, 37(1): 122-130. doi: 10.6046/zrzyyg.2023208
引用本文: 魏小强, 杨国林, 刘涛, 邵明, 马志刚. 2025. 基于GRACE与InSAR数据地下水变化与地面沉降滞后性研究. 自然资源遥感, 37(1): 122-130. doi: 10.6046/zrzyyg.2023208
WEI Xiaoqiang, YANG Guolin, LIU Tao, SHAO Ming, MA Zhigang. 2025. A study on time lags between groundwater changes and land subsidence based on GRACE and InSAR data. Remote Sensing for Natural Resources, 37(1): 122-130. doi: 10.6046/zrzyyg.2023208
Citation: WEI Xiaoqiang, YANG Guolin, LIU Tao, SHAO Ming, MA Zhigang. 2025. A study on time lags between groundwater changes and land subsidence based on GRACE and InSAR data. Remote Sensing for Natural Resources, 37(1): 122-130. doi: 10.6046/zrzyyg.2023208

基于GRACE与InSAR数据地下水变化与地面沉降滞后性研究

  • 基金项目:

    国家自然科学基金项目“基于重力和连续参考站的祁连山地区地壳非构造负荷垂直形变影响因素分解研究”(编号: 41764001)、“灾害场景下应急地图需求一体化建模”(编号: 42261076)、兰州交通大学优秀平台(编号: 201806)和兰州交通大学天佑创新团队项目“灾害监测及应急制图”(编号: TY202001)共同资助

详细信息
    作者简介: 魏小强(1997-), 男, 硕士研究生, 主要从事重力卫星在水文方面的应用研究。Email: 11210895@stu.lzjtu.edu.cn
    通讯作者: 杨国林(1978-), 男, 硕士, 副教授, 主要从事大地测量理论及数据处理研究。Email: gl_yang@sina.com
  • 中图分类号: P642.26; |P237; |P641.7

A study on time lags between groundwater changes and land subsidence based on GRACE and InSAR data

More Information
    Corresponding author: YANG Guolin
  • 河西地区地下水利用比重不断上升导致地下水位显著下降, 引起了局部地区地面沉降。研究河西地区地下水变化与地面沉降滞后性对当地水资源管理、土地利用规划和农业发展具有重要意义。利用GRACE与GLDAS数据得到研究区2010—2017年地下水变化速率, 结合监测井实测数据验证了反演地下水变化数据的可靠性, 利用小基线集合成孔径雷达干涉测量(small baseline subset interferometry synthetic aperture Radar, SBAS-InSAR)技术得到局部沉降区2014年10月—2017年6月的地表形变速率, 并用永久散射体合成孔径雷达干涉测量(persistent scatters interferometry synthetic aperture Radar, PS-InSAR)技术对结果进行对比验证, 运用快速傅里叶变换和时滞相关性分析对地下水变化与地表沉降数据解算分析。结果表明, 临泽、甘州、凉州、金川沉降区地面沉降较地下水变化滞后时间分别为74~86 d, 61~80 d, 80~99 d, 74~99 d; 相关系数分别在0.541~0.593, 0.589~0.689, 0.600~0.750, 0.543~0.630之间。研究结果可为河西地区水资源管理、土地利用规划和农业发展提供科学依据。
  • 加载中
  • [1]

    于海若, 宫辉力, 陈蓓蓓, 等.新水情下利用InSAR-GRACE卫星的新兴风险预警与城市地下空间安全展望[J].国土资源遥感, 2020, 32(4):16-22.doi:10.6046/gtzyyg.2020.04.03.

    Yu H R, Gong H L, Chen B B, et al.Emerging risks and the prospect of urban underground space security based on InSAR-GRACE satellite under the new hydrological background[J].Remote Sen-sing for Land and Resources, 2020, 32(4):16-22.doi:10.6046/gtzyyg.2020.04.03.

    [2]

    Castellazzi P, Martel R, Galloway D L, et al.Assessing groundwater depletion and dynamics using GRACE and InSAR: Potential and limitations[J].Ground Water, 2016, 54(6): 768-780.

    [3]

    Castellazzi P, Longuevergne L, Martel R, et al.Quantitative mapping of groundwater depletion at the water management scale using a combined GRACE/InSAR approach[J].Remote Sensing of Environment, 2018, 205: 408-418.

    [4]

    Rodell M, Velicogna I, Famiglietti J S.Satellite-based estimates of groundwater depletion in India[J].Nature, 2009, 460(7258): 999-1002.

    [5]

    虎小强, 杨树文, 闫恒, 等.基于时序InSAR的新疆阿希矿区地表形变监测与分析[J].自然资源遥感, 2023, 35(1):171-179.doi:10.6046/zrzyyg.2021415.

    Hu X Q, Yang S W, Yan H, et al.Time-series InSAR-based monitoring and analysis of surface deformation in the Axi mining area, Xinjiang[J].Remote Sensing for Natural Resources, 2023, 35(1):171-179.doi:10.6046/zrzyyg.2021415.

    [6]

    张庆洁, 赵争, 贾李博, 等.黄河三角洲地面沉降现状及影响因素分析[J].测绘科学, 2022, 47(12):165-173.

    Zhang Q J, Zhao Z, Jia L B, et al.Analysis of land subsidence status and influencing factors in Yellow River Delta[J].Science of Surveying and Mapping, 2022, 47(12):165-173.

    [7]

    杨旺, 何毅, 张立峰, 等.甘肃金川矿区地表三维形变InSAR监测[J].自然资源遥感, 2022, 34(1):177-188.doi:10.6046/zrzyyg.2021107Yang W, He Y, Zhang L F, et al.InSAR monitoring of 3D surface deformation in Jinchuan mining area, Gansu Province[J].Remote Sensing for Natural Resources, 2022, 34(1):177-188.doi:10.6046/zrzyyg.2021107.

    [8]

    Guo J, Zhou L, Yao C, et al.Surface subsidence analysis by multi-temporal InSAR and GRACE: A case study in Beijing[J].Sensors, 2016, 16(9): 1495.

    [9]

    Vasco D W, Kim K H, Farr T G, et al.Using Sentinel-1 and GRACE satellite data to monitor the hydrological variations within the Tulare Basin, California[J].Scientific Reports, 2022, 12(1): 3867.

    [10]

    Massoud E C, Liu Z, Shaban A, et al.Groundwater depletion signals in the Beqaa Plain, Lebanon:Evidence from GRACE and Sentinel-1 data[J].Remote Sensing, 2021, 13(5): 915.

    [11]

    费太政, 常晓涛, 朱广彬, 等.利用GRACE与Sentinel-1反演地下水变化与地表沉降研究[J].测绘科学, 2023, 48(1):140-147.

    Fei T Z, Chang X T, Zhu G B, et al.Study on inversion of ground-water change and surface subsidence using GRACE and Sentinel-1[J].Science of Surveying and Mapping, 2023, 48(1):140-147.

    [12]

    李红英, 李岩瑛, 王云鹏, 等.河西走廊西部沙尘暴时空差异及其动力分析[J].干旱区资源与环境, 2022, 36(10):104-112.

    Li H Y, Li Y Y, Wang Y P, et al.Temporal and spatial differences and dynamic analysis of sandstorms in the west of Hexi Corridor[J].Journal of Arid Land Resources and Environment, 2022, 36(10):104-112.

    [13]

    李平平.甘肃省地下水超采区地面沉降控制区判定方法和结果探讨[J].中国农村水利水电, 2019(6):74-77.

    Li P P.Determination method and discussion of ground subsidence control area of groundwater overmining area in Gansu Province[J].China Rural Water and Hydropower, 2019(6):74-77.

    [14]

    Zheng M, Deng K, Fan H, et al.Monitoring and analysis of surface deformation in mining area based on InSAR and GRACE[J].Remote Sensing, 2018, 10(9):1392.

    [15]

    Wang Q, Zheng W, Yin W, et al.Improving the resolution of GRACE/InSAR groundwater storage estimations using a new subsidence feature weighted combination scheme[J].Water, 2023, 15(6):1017.

    [16]

    Agarwal V, Kumar A, Gomes R L, et al.Monitoring of ground movement and groundwater changes in London using InSAR and GRACE[J].Applied Sciences, 2020, 10(23):8599.

    [17]

    Khorrami M, Shirzaei M, Ghobadi-Far K, et al.Groundwater vo-lume loss in Mexico City constrained by InSAR and GRACE observations and mechanical models[J].Geophysical Research Letters, 2023, 50(5): e2022GL101962.

    [18]

    Liu Z, Liu P W, Massoud E, et al.Monitoring groundwater change in California’s central valley using Sentinel-1 and GRACE observations[J].Geosciences, 2019, 9(10):436.

    [19]

    Ferretti A, Prati C, Rocca F.Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J].IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2202-2212.

    [20]

    Berardino P, Fornaro G, Lanari R, et al.A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J].IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2375-2383.

    [21]

    杨国林, 孙学先, 胡栋, 等.利用GRACE数据研究柴达木盆地区域水储量时空变化及干旱特征[J].导航定位学报, 2023, 11(1):107-112.

    Yang G L, Sun X X, Hu D, et al.Application of GRACE data in analysis on temporal and spatial changes of water reserves and drought characteristics of Qaidam Basin[J].Journal of Navigation and Positioning, 2023, 11(1):107-112.

    [22]

    韦振锋, 任志远, 张翀.气候因子与植被的时滞相关分析--以广西为例[J].生态环境学报, 2013, 22(11):1757-1762.

    Wei Z F, Ren Z Y, Zhang C.Analysis on the time-lag correlation between vegetation and climatic factors:Take Guangxi as an example[J].Ecology and Environmental Sciences, 2013, 22(11):1757-1762.

    [23]

    Hussain M A, Chen Z, Zheng Y, et al.PS-InSAR based monitoring of land subsidence by groundwater extraction for Lahore Metropolitan City, Pakistan[J].Remote Sensing, 2022, 14(16):3950.

    [24]

    Béjar-Pizarro M, Ezquerro P, Herrera G, et al.Mapping groundwater level and aquifer storage variations from InSAR measurements in the Madrid aquifer, Central Spain[J].Journal of Hydrology, 2017, 547:678-689.

    [25]

    范军, 左小清, 李涛, 等.PS-InSAR和SBAS-InSAR技术对昆明主城区地面沉降监测的对比分析[J].测绘工程, 2018, 27(6):50-58.

    Fan J, Zuo X Q, Li T, et al.Analysis and comparison of PS-InSAR and SBAS-InSAR for ground subsidence monitoring in the main city of Kunming[J].Engineering of Surveying and Mapping, 2018, 27(6):50-58.

  • 加载中
计量
  • 文章访问数:  48
  • PDF下载数:  11
  • 施引文献:  0
出版历程
收稿日期:  2023-07-14
修回日期:  2023-10-17

目录