中国自然资源航空物探遥感中心主办
地质出版社出版

基于DeepLabv3+模型的地表水体快速遥感监测

康辉, 窦文章, 韩灵怡, 丁梓越, 吴亮廷, 侯璐. 2024. 基于DeepLabv3+模型的地表水体快速遥感监测. 自然资源遥感, 36(4): 117-123. doi: 10.6046/zrzyyg.2023227
引用本文: 康辉, 窦文章, 韩灵怡, 丁梓越, 吴亮廷, 侯璐. 2024. 基于DeepLabv3+模型的地表水体快速遥感监测. 自然资源遥感, 36(4): 117-123. doi: 10.6046/zrzyyg.2023227
KANG Hui, DOU Wenzhang, HAN Lingyi, DING Ziyue, WU Liangting, HOU Lu. 2024. Rapid monitoring of surface water based on remote sensing data and DeepLabv3+ model. Remote Sensing for Natural Resources, 36(4): 117-123. doi: 10.6046/zrzyyg.2023227
Citation: KANG Hui, DOU Wenzhang, HAN Lingyi, DING Ziyue, WU Liangting, HOU Lu. 2024. Rapid monitoring of surface water based on remote sensing data and DeepLabv3+ model. Remote Sensing for Natural Resources, 36(4): 117-123. doi: 10.6046/zrzyyg.2023227

基于DeepLabv3+模型的地表水体快速遥感监测

  • 基金项目:

    国家自然科学基金青年项目“面向控制与通信融合的实时可靠无线传输机制研究”(62001052)

    北京邮电大学基本科研业务费项目“基于互学习的深度强化学习算法研究”(2022RC04)

详细信息
    作者简介: 康辉(1981-),男,博士,主要从事电子信息创新研究。Email: kanghui@139.com
    通讯作者: 韩灵怡(1990-),女,博士,工程师,主要从事智能化研究。Email: hanlingyi@bupt.edu
  • 中图分类号: TP79

Rapid monitoring of surface water based on remote sensing data and DeepLabv3+ model

More Information
    Corresponding author: HAN Lingyi
  • 地表水体监测对于水资源保护具有重要的参考价值。该文以2013—2022年的国产高分一号(GF-1)系列遥感影像为数据源,发展了一种基于深度学习模型DeepLabv3+的像素级地表水体遥感提取方法。在北京市密云区的实验结果表明,该方法可快速获取多期次像元尺度的地表水时空分布,提取结果与真实空间分布基本一致; 与随机森林算法、支持向量机算法和最大似然法等常规分类算法提取结果进行对比,所提方法的精确率和召回率分别达99.22%和98.01%,水体提取精度较高。通过长时间序列监测,2013—2022年间密云区地表水体面积经过持续性减小→增加→保持稳定3个过程。该方法提取精度和效率满足区域级水体空间范围变化监测的需求,在区域地表水资源遥感快速监测和生态评价等领域具有广阔的业务应用前景。

    Surface water monitoring can provide important references for water resource protection. Using 2013-2022 remote sensing images from the domestic high-resolution GF-1 constellation, this study developed a pixel-scale method for surface water information extraction based on the DeepLabv3+deep learning model. The experimental results of derived in Miyun District of Beijing indicate that the proposed method can quickly obtain multiple phases of pixel-scale spatiotemporal distributions of surface water, with the extraction results roughly consistent with actual spatial distribution. Compared to conventional classification algorithms such as random forest, support vector machine, and maximum likelihood, this method exhibited extraction precision and recall of 99.22% and 98.01%, respectively, demonstrating high accuracy in water information extraction. The long-term serial monitoring results indicate that the surface water area evolved from a continuous decrease to an increase and then to stabilization from 2013 to 2022. Since the extraction accuracy and efficiency can meet the demand for the monitoring of the spatial changes in regional water bodies, the proposed method enjoys broad prospects for practical application in the fields of remote sensing-based rapid monitoring and ecological assessment of regional surface water resources.

  • 加载中
  • 加载中
计量
  • 文章访问数:  44
  • PDF下载数:  10
  • 施引文献:  0
出版历程
收稿日期:  2023-07-24
修回日期:  2023-09-05
刊出日期:  2024-12-23

目录