中国自然资源航空物探遥感中心主办
地质出版社出版

夜光遥感新冠疫区主要城市经济时空分析

李睿锴, 赵宗泽, 汤晓洁, 张嘉芸, 王冠, 张丽娟. 2025. 夜光遥感新冠疫区主要城市经济时空分析. 自然资源遥感, 37(1): 243-251. doi: 10.6046/zrzyyg.2023257
引用本文: 李睿锴, 赵宗泽, 汤晓洁, 张嘉芸, 王冠, 张丽娟. 2025. 夜光遥感新冠疫区主要城市经济时空分析. 自然资源遥感, 37(1): 243-251. doi: 10.6046/zrzyyg.2023257
LI Ruikai, ZHAO Zongze, TANG Xiaojie, ZHANG Jiayun, WANG Guan, ZHANG Lijuan. 2025. Spatiotemporal analysis of economy in China’s primary cities affected by the COVID-19 pandemic based on remote sensing of night light. Remote Sensing for Natural Resources, 37(1): 243-251. doi: 10.6046/zrzyyg.2023257
Citation: LI Ruikai, ZHAO Zongze, TANG Xiaojie, ZHANG Jiayun, WANG Guan, ZHANG Lijuan. 2025. Spatiotemporal analysis of economy in China’s primary cities affected by the COVID-19 pandemic based on remote sensing of night light. Remote Sensing for Natural Resources, 37(1): 243-251. doi: 10.6046/zrzyyg.2023257

夜光遥感新冠疫区主要城市经济时空分析

  • 基金项目:

    河南理工大学基本科研业务费专项项目(自然科学类)“3D特征神经网络灾区建筑物损伤分类”(编号: NSFRF210313)资助

详细信息
    作者简介: 李睿锴(2003-), 男, 本科, 主要从事夜光数据处理与分析工作。Email : liruikaistudy@163.com
    通讯作者: 赵宗泽(1988-), 男, 博士, 讲师, 主要从事遥感数据处理与分析研究。Email : zzz0212@foxmail.com
  • 中图分类号: F124; |TP79

Spatiotemporal analysis of economy in China’s primary cities affected by the COVID-19 pandemic based on remote sensing of night light

More Information
    Corresponding author: ZHAO Zongze
  • 新型冠状病毒肺炎疫情(下文简称“新冠疫情”)对我国经济产生了重大影响。该研究基于NPP-VIIRS夜间灯光(night time light, NTL)数据, 选取5个曾发生大规模聚集性疫情的国内主要城市, 建立NTL指数与国内生产总值(gross domestic product, GDP)统计值的拟合模型, 反演经济月度变化情况, 得到GDP空间化数据, 并利用月度间GDP密度差值分析经济空间变化趋势。得出主要结论如下: ①利用NTL指数进行GDP空间化得到的GDP预测值相对误差较小, 能够直观清晰地反映出城市经济受疫情影响情况; ②受到人员流动政策影响, 大多数城市边缘区域在疫情初期和后期经济出现衰退, 在疫情中期经济出现增长, 而中心区经济在疫情中期出现衰退, 在疫情初期受影响较小且疫情后期恢复增长迅速; ③城市中心区域经济抵御疫情影响能力强于边缘区域。
  • 加载中
  • [1]

    张清敏.新冠肺炎疫情与全球卫生外交[J].当代世界, 2020(4):35-41.

    Zhang Q M.Global health diplomacy in COVID-19 epidemic[J].Contemporary World, 2020(4):35-41.

    [2]

    Yue W, Gao J, Yang X.Estimation of gross domestic product using multi-sensor remote sensing data:A case study in Zhejiang Pro-vince, East China[J].Remote Sensing, 2014, 6(8):7260-7275.

    [3]

    李德仁, 李熙.论夜光遥感数据挖掘[J].测绘学报, 2015, 44(6):591-601.

    Li D R, Li X.An overview on data mining of nighttime light remote sensing[J].Acta Geodaetica et Cartographica Sinica, 2015, 44(6):591-601.

    [4]

    郭永德, 高金环, 马洪兵.Suomi-NPP夜间灯光数据与GDP的空间关系分析[J].清华大学学报(自然科学版), 2016, 56(10):1122-1130.

    Guo Y D, Gao J H, Ma H B.Spatial correlation analysis of Suomi-NPP nighttime light data and GDP data[J].Journal of Tsinghua University(Science and Technology), 2016, 56(10):1122-1130.

    [5]

    顾鹏程, 王世新, 周艺, 等.基于时间序列DMSP/OLS夜间灯光数据的GDP预测模型[J].中国科学院大学学报, 2019, 36(2):188-195.

    Gu P C, Wang S X, Zhou Y, et al.Estimation of GDP based on long time series of DMSP/OLS nighttime light images[J]. Journal of University of Chinese Academy of Sciences, 2019, 36(2):188-195.

    [6]

    陈颖彪, 郑子豪, 吴志峰, 等.夜间灯光遥感数据应用综述和展望[J].地理科学进展, 2019, 38(2):205-223.

    Chen Y B, Zheng Z H, Wu Z F, et al.Review and prospect of application of nighttime light remote sensing data[J].Progress in Geo-graphy, 2019, 38(2):205-223.

    [7]

    余柏蒗, 王丛笑, 宫文康, 等.夜间灯光遥感与城市问题研究: 数据、方法、应用和展望[J].遥感学报, 2021, 25(1):342-364.

    Yu B L, Wang C X, Gong W K, et al.Nighttime light remote sen-sing and urban studies: Data, methods, applications, and prospects[J].National Remote Sensing Bulletin, 2021, 25(1):342-364.

    [8]

    韩向娣, 周艺, 王世新, 等.夜间灯光遥感数据的 GDP 空间化处理方法[J].地球信息科学学报, 2012, 14(1):128-136.

    Han X D, Zhou Y, Wang S X, et al.GDP spatialization in China based on nighttime imagery[J].Journal of Geo-information Science, 2012, 14(1):128-136.

    [9]

    刘杨, 李宏伟, 杨斌程, 等.基于遥感数据和POI数据的GDP空间化研究--以北京市为例[J].地域研究与开发, 2021, 40(2):27-32, 39.

    Liu Y, Li H W, Yang B C, et al.Spatialization of GDP based on remote sensing data and POI data:A case study of Beijing City[J].Areal Research and Development, 2021, 40(2):27-32, 39.

    [10]

    Dai Z, Hu Y, Zhao G.The suitability of different nighttime light data for GDP estimation at different spatial scales and regional levels[J].Sustainability, 2017, 9(2):305.

    [11]

    孙久文, 周孝伦.多维视角下的长三角城市群空间结构及其影响因素--基于NPP-VIIRS夜间灯光数据和高德人口迁徙数据[J].经济地理, 2023, 43(5):78-88.

    Sun J W, Zhou X L.Spatial structure and influencing factors of the Yangtze River Delta urban agglomeration from a multidimensional perspective:Based on NPP-VIIRS nighttime lighting data and Gaode’s population migration data[J].Economic Geography, 2023, 43(5):78-88.

    [12]

    李翔, 朱江, 尹向东, 等.利用珞珈一号夜间灯光数据的广东省GDP空间化[J].遥感信息, 2021, 36(2):40-45.

    Li X, Zhu J, Yin X D, et al.Spatializing GDP of Guangdong Pro-vince based on Luojia No.1 night light data[J].Remote Sensing Information, 2021, 36(2):40-45.

    [13]

    Zhao Z, Tang X, Wang C, et al.Analysis of the spatial and temporal evolution of the GDP in Henan Province based on nighttime light data[J].Remote Sensing, 2023, 15(3):716.

    [14]

    江泽霖, 邓健, 栾海军, 等.基于逐日夜间灯光遥感的新冠肺炎疫情变化信息快速提取--以北京市为例[J].测绘通报, 2022 (7):43-48.

    Jiang Z L, Deng J, Luan H J, et al .Rapid extraction of COVID-19 information based on nighttime light remote sensing:A case study of Beijing[J].Bulletin of Surveying and Mapping, 2022(7):43-48.

    [15]

    陶金花, 范萌, 顾坚斌, 等.新冠病毒疫情期间复工复产卫星遥感监测[J].遥感学报, 2020, 24(7):824-836.

    Tao J H, Fan M, Gu J B, et al.Satellite observations of the return-to-work over China during the period of COVID-19[J].Journal of Remote Sensing, 2020, 24(7):824-836.

    [16]

    Elvidge C D, Ghosh T, Hsu F C, et al.The dimming of lights in China during the COVID-19 pandemic[J].Remote Sensing, 2020, 12(17):2851.

    [17]

    Liu Q, Sha D, Liu W, et al.Spatiotemporal patterns of COVID-19 impact on human activities and environment in mainland China using nighttime light and air quality data[J].Remote Sensing, 2020, 12(10):1576.

    [18]

    Shao Z, Tang Y, Huang X, et al.Monitoring work resumption of Wuhan in the COVID-19 epidemic using daily nighttime light[J].Photogrammetric Engineering and Remote Sensing, 2021, 87(3):195-204.

    [19]

    裴韬, 王席, 宋辞, 等.COVID-19疫情时空分析与建模研究进展[J].地球信息科学学报, 2021, 23(2):188-210.

    Pei T, Wang X, Song C, et al.Review on spatiotemporal analysis and modeling of COVID-19 pandemic[J].Journal of Geo-information Science, 2021, 23(2):188-210.

    [20]

    Zhao M, Cheng W, Zhou C, et al.GDP spatialization and economic differences in South China based on NPP-VIIRS nighttime light imagery [J].Remote Sensing, 2017, 9(7):673.

  • 加载中
计量
  • 文章访问数:  130
  • PDF下载数:  9
  • 施引文献:  0
出版历程
收稿日期:  2023-08-28
修回日期:  2023-12-05

目录