Application Suggestions and Geochemical Characteristics of Ultralarge High Quality Black Talc Ore in Guangfeng, Jiangxi Province
-
摘要:
为了了解江西省上饶市广丰区黑滑石矿石矿物特征、地球化学特征及碳含量特征等,以便更好地利用黑滑石,助力打造黑滑石百亿元产业基地,通过对该区黑滑石开展野外调查、岩相学、地球化学分析等,并在此基础上提出对黑滑石应用的建议。结果显示本区黑滑石矿石类型主要为假鲕状滑石岩、角砾状滑石岩、片理化滑石岩等。矿石中矿物主要为黑滑石、石英及白云石,化学成分主要为SiO2、MgO和CaO;假鲕状滑石岩和角砾状滑石岩的总碳和无机碳含量明显低于片理化滑石岩,而有机碳含量明显高于片理化滑石岩;本区黑滑石初步达到塑料、陶瓷、橡胶及涂料用滑石一级标准。
Abstract:In order to understand the mineral characteristics, geochemical characteristics and carbon content characteristics of black talc ore in Guangfeng District, Shangrao City, Jiangxi Province, make better use of black talc and help to build a 10 billion yuan industrial base of black talc.Based on the field investigation, petrography and geochemical analysis, some suggestions on the application of black talc are put forward.The results show that the main types of black talc in this area are pseudooolitic, brecciated and schistose talc.The main minerals in the ore are black talc, quartz and dolomite.The chemical composition of the ore is mainly SiO2, MgO and CaO.The contents of total carbon and inorganic carbon in pseudooolitic and brecciated talc are significantly lower than those in schistose talc.But the content of organic carbon is higher than that of schistose talc.The black talc in this area has preliminary reached the first grade standard of talc for plastics, ceramics, rubber and coatings.
-
-
图 7 样品微量元素蛛网图[11]
Figure 7.
图 8 样品稀土元素球粒陨石标准化配分曲线[12]
Figure 8.
表 1 样品主量元素测试分析数据
Table 1. Test and analysis data of major elements in samples
/% 岩性 样号 SiO2 MgO CaO Al2O3 BaO Cr2O3 TFe2O3 K2O MnO Na2O NiO P2O5 SO3 TiO2 ZnO 烧失量 合计 中等风化黑滑石岩 GF01 81.26 15.40 0.04 0.02 0.01 0.03 0.13 0.01 0.01 0.08 0.02 0.01 0.01 < 0.01 0.04 2.47 99.54 假鲕状滑石岩 GF02 77.03 17.60 0.46 0.20 < 0.01 0.02 0.21 0.02 0.01 0.08 0.01 0.03 0.09 < 0.01 0.03 4.24 100.03 角砾状滑石岩 GF03 63.67 30.00 0.38 < 0.01 < 0.01 0.02 0.05 0.02 0.01 0.12 0.01 0.02 0.10 < 0.01 0.05 5.74 100.19 片理化滑石岩 GF04 50.65 28.2 6.58 < 0.01 0.02 < 0.01 0.05 0.01 0.03 0.11 < 0.01 0.04 0.06 < 0.01 0.03 14.1 99.88 钙质泥岩 H02 58.81 4.41 1.26 15.54 0.14 0.01 5.74 6.90 0.03 0.05 0.01 0.21 0.54 1.86 0.02 4.57 100.1 表 2 样品微量元素测试分析数据
Table 2. Analysis data of trace elements in samples
/10-6 岩性 样号 Rb Ba Th U K Nb La Ce Pb Sr 中等风化黑滑石岩 GF01 0.6 27.5 0.48 0.38 100 1.1 0.7 1.4 2 1.9 假鲕状滑石岩 GF02 1.0 42.6 0.23 0.2 200 0.5 0.7 1.2 0.9 14.9 角砾状滑石岩 GF03 0.7 27.2 0.52 0.24 200 1.3 0.5 1.1 2.2 8.3 片理化滑石岩 GF04 0.3 183.5 0.28 0.24 100 0.7 0.4 0.8 1.1 105.5 钙质泥岩 H02 131.5 1170 10.55 1.23 57900 25.3 38.1 58.7 2.9 59.7 岩性 样号 Nd P Zr Sm Eu Tb Y Er Yb Lu 中等风化黑滑石岩 GF01 0.6 90 4.9 0.12 0.03 0.03 1.7 0.13 0.16 0.03 假鲕状滑石岩 GF02 0.5 180 3.3 0.1 0.02 0.02 0.9 0.07 0.07 0.01 角砾状滑石岩 GF03 0.5 120 6.8 0.12 0.03 0.02 1.4 0.1 0.15 0.03 片理化滑石岩 GF04 0.4 220 3.4 0.11 0.02 0.02 1.4 0.1 0.16 0.03 钙质泥岩 H02 30.2 990 284 6.33 1.53 1.03 32.5 3.17 2.81 0.42 表 3 样品稀土含量测试及特征值
Table 3. Rare earth content test and characteristic value of samples
/10-6 岩性 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm 中等风化黑滑石岩 0.70 1.40 0.15 0.60 0.12 0.03 0.17 0.03 0.19 0.04 0.13 0.02 假鲕状滑石岩 0.70 1.20 0.13 0.50 0.10 0.02 0.11 0.02 0.10 0.02 0.07 0.01 角砾状滑石岩 0.50 1.10 0.12 0.50 0.12 0.03 0.12 0.02 0.14 0.03 0.10 0.02 片理化滑石岩 0.40 0.80 0.09 0.40 0.11 0.02 0.11 0.02 0.13 0.03 0.10 0.02 钙质泥岩 38.10 58.70 8.32 30.20 6.33 1.53 6.28 1.03 6.04 1.17 3.17 0.47 岩性 Yb Lu ΣREE ΣLREE ΣHREE LREE/HREE δEu δCe (La/Sm)N (La/Yb)N (Sm/Nd)N (Gd/Yb)N 中等风化黑滑石岩 0.16 0.03 3.77 3.00 0.77 3.90 0.64 0.99 3.67 2.95 0.62 0.86 假鲕状滑石岩 0.07 0.01 3.06 2.65 0.41 6.46 0.58 0.89 4.40 6.74 0.62 1.27 角砾状滑石岩 0.15 0.03 2.98 2.37 0.61 3.89 0.76 1.05 2.62 2.25 0.74 0.65 片理化滑石岩 0.16 0.03 2.42 1.82 0.60 3.03 0.55 0.98 2.29 1.69 0.85 0.55 钙质泥岩 2.81 0.42 164.57 143.18 21.39 6.69 0.73 0.76 3.79 9.14 0.64 1.80 表 4 样品碳类别及含量测试
Table 4. Carbon category and content test of samples
/% 岩性 样号 无机碳 有机碳 总碳 中等风化黑滑石岩 GF01 < 0.05 0.11 0.10 假鲕状滑石岩 GF02 0.23 0.69 0.92 角砾状滑石岩 GF03 0.13 0.72 0.90 片理化滑石岩 GF04 2.72 0.44 3.38 钙质泥岩 H02 0.39 0.04 0.45 表 5 样品元素特征值
Table 5. Characteristic values of sample elements
岩性 样号 Zr/A1 Rb/K Sr/Cu Sr/Ba Th/U La/Ce 假鲕状滑石岩 GF02 33.00 50.00 2.44 0.35 1.15 0.58 角砾状滑石岩 GF03 340.00 35.00 0.14 0.31 2.17 0.45 片理化滑石岩 GF04 340.00 30.00 3.78 0.57 1.17 0.50 平均值 237.67 38.33 2.12 0.41 1.49 0.51 -
[1] PI-PUIG T, ANIMAS-TORICES DY, SOLé J. Mineralogical and geochemical characterization of talc from two Mexican Ore Deposits (Oaxaca and Puebla) and Nine Talcs Marketed in Mexico: Evaluation of its cosmetic uses[J]. Minerals, 2020, 10: 388. doi: 10.3390/min10050388
[2] 杨辉. 滑石加工工艺方法浅析[J]. 矿产保护与利用, 2014(3): 56-58. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=fbb3fcbe-b702-47ee-9e77-78d0b77af385
[3] 宗培新. 我国黑滑石产业现状及发展趋势[J]. 中国非金属矿工业导刊, 2014(1): 1-3. doi: 10.3969/j.issn.1007-9386.2014.01.001
[4] FAN P, LIU H, LIAO L, et al. Excellent electrochemical properties of graphene-like carbon obtained from acid-treating natural black talc as Li-ion battery anode[J]. Electrochimica Acta, 2018, 289: 407-414. doi: 10.1016/j.electacta.2018.09.079
[5] 秦文莉. 基于黑滑石的复合材料制备及其在功能材料领域的应用研究[D]. 杭州: 浙江大学, 2018.
[6] 张连湘, 欧阳淇生, 巫志豪. 江西广丰黑滑石矿床成因模式及找矿方向分析[J]. 资源信息与工程, 2019, 34(6): 17-20. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJW201906006.htm
[7] 朱馨怡. 江西广丰黑滑石矿床岩石学、地球化学特征及成因探讨[D]. 北京: 中国地质大学(北京), 2020.
[8] 李成祥. 江西广丰黑滑石矿物学研究[D]. 南京: 南京大学, 2016.
[9] 雷焕玲. 江西广丰超大型滑石矿矿床地球化学特征及成因[D]. 南京: 南京大学, 2012.
[10] 陈正国, 邸素梅, 祝强. 广丰黑滑石的增白试验及致黑机理探讨[J]. 非金属矿, 1993(6): 6-8. https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK199306000.htm
[11] SUN SS, MCDONOUGH WF. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, et al. Magmatism in the oceanic basins[J]. Special Publication of Geological Society of London, 1989, 42: 313-346. doi: 10.1144/GSL.SP.1989.042.01.19
[12] BOYNTON WV. Cosmochemistry of the rare earth elements: Meteorite studies. In: Henderson P (ed. ). Developments in geochemistry[J]. Amsterdam: Elsevier, 1984, 2: 63-114. http://ci.nii.ac.jp/naid/10003417033
[13] MOORE DE, LOCKNER DA. Talc friction in the temperature range 25℃-400℃: Relevance for fault-zone weakening[J]. Tectonophysics, 2008, 449: 120-132. doi: 10.1016/j.tecto.2007.11.039
[14] PROCHASKA W. Geochemistry and genesis of Austrian talc deposits[J]. Applied Geochemistry, 1989, 4(5): 511-525. doi: 10.1016/0883-2927(89)90008-5
[15] MUHAMMAD T, AKIRA I, RYOHEI T, et al. Ore Genesis and geochemical characteristics of carbonate hosted talc deposits in Nangarhar Province, Afghanistan[J]. Resource Geology, 2018, 68(4): 352-372. doi: 10.1111/rge.12174
[16] LEE J, JUNG H, KLEMD R, et al. Lattice preferred orientation of talc and implications for seismic anisotropy in subduction zones[J]. Earth and Planetary Science Letters, 2020, 537, 116178.
[17] DEKOV VM, CUADROS J, SHANKS WC, et al. Deposition of talc-kerolite-smectite-smectite at seafloor hydrothermal vent fields: Evidence from mineralogical, geochemical and oxygen isotope studies[J]. Chemical Geology, 2008, 247(1/2): 171-194. http://www.sciencedirect.com/science/article/pii/S0009254107004585
[18] TOSCA NJ, MACDONALD FA, STRAUSS JV, et al. Sedimentary talc in Neoproterozoic carbonate successions[J]. Earth and Planetary Science Letters, 2011, 306(1/2): 11-22. http://www.sciencedirect.com/science/article/pii/S0012821X1100207X
[19] RODRÍGUEZ-RUIZ MD, ABAD I, BENTABOL M, et al. Evidences of talc-white mica assemblage in low-grade metamorphic rocks from the internal zone of the Rif Cordillera (N Morocco)[J]. Applied Clay Science, 2020, 195: 105723. doi: 10.1016/j.clay.2020.105723
[20] DAS BK, BIRGIT-GAYE H. Geochemistry of rewalsar lake sediment, Lesser Himalaya, India: Implications for source-area weathering, provenance and tectonic setting[J]. Geosciences Journal, 2003, 7(4): 299-312. doi: 10.1007/BF02919560
[21] JIN ZD, LI FC, CAO JJ, et al. Geochemistry of Daihai Lake Sediments, Inner Mongolia, North China: Implications for provenance, sedimentary sorting, and catchment weathering[J]. Geomorphology, 2006, 80(3): 147-163. http://www.sciencedirect.com/science/article/pii/S0169555X06000808
[22] 李春荣, 陈开远. 潜江凹陷潜江组元素演化特征及其古气候意义[J]. 石油地质与工程, 2007(6): 18-21. doi: 10.3969/j.issn.1673-8217.2007.06.005
[23] PETER JM, SCOTT SD. Mineralogy, composition, and fluid-inclusion microthermometry of seafloor hydrothermal deposits in the southern trough of Guaymas basin, gulf of California[J]. Canadian Mineralogist, 1988, 2G: 567-587. http://ci.nii.ac.jp/naid/80004314197
[24] TOTH JR. Deposition of submarine crusts rich in manganese and iron[J]. GSA Bulletin, 1980, 91(1): 44-54. doi: 10.1130/0016-7606(1980)91<44:DOSCRI>2.0.CO;2
[25] 汤冬杰, 史晓颖, 裴云鹏, 等. 华北中元古代陆表海氧化还原条件[J]. 古地理学报, 2011, 13(5): 563-580. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201105016.htm
[26] KIMURA H, WATANABE Y. Oceanic anoxia at the precambriancambrian boundary[J]. Geology, 2001, 29(11): 995-998. doi: 10.1130/0091-7613(2001)029<0995:OAATPC>2.0.CO;2
[27] BRUMSACK HJ. The trace metal content of recent organic carbon-rich sediments; Implications for cretaceous black shale formation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232(2): 344-361. http://www.sciencedirect.com/science/article/pii/S0031018205002737
[28] 吴朝东, 杨承运, 陈其英. 湘西黑色岩系地球化学特征和成因意义[J]. 岩石矿物学杂志, 1999, 18(1): 26-39. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW901.004.htm
[29] 孟凡巍, 刘成林, 倪培. 全球古海水化学演化与世界主要海相钾盐沉积关系暨中国海相成钾探讨[J]. 微体古生物学报, 2012, 29(1): 62-69. https://www.cnki.com.cn/Article/CJFDTOTAL-WSGT201201007.htm
[30] LI C, WANG R, XU H, et al. Interstratification of graphene-like carbon layers within black talc from Southeastern China: Implications to sedimentary talc formation[J]. American Mineralogist, 2016, 101(7), 1668-1678. doi: 10.2138/am-2016-5600
-