-
摘要:
湖北某锌冶炼渣铜品位约为1.01%,铜主要以类质同象形式赋存于磁黄铁矿中,其次是铁氧化物(磁铁矿和赤铁矿)中,主要脉石矿物为玻璃质等。该论文首先研究锌冶炼渣的矿物组成及铜的赋存状态,之后分别对原渣样品和渣磁选除铁尾矿进行了选铜工艺试验,探索了不同种类抑制剂和捕收剂对铜金属回收的影响。结果表明,原冶炼渣样粗选采用丁铵黑药+乙硫氮组合捕收剂,经过1次粗选、2次精选和1次扫选开路选别流程,可以得到铜品位5.10%、回收率66.09%的铜精矿。冶炼渣磁选除铁尾矿粗选采用丁铵黑药捕收剂,经过1次粗选、2次精选和1次扫选开路选别流程,可以得到铜品位3.45%、相对磁选尾矿回收率57.61%的铜精矿。
Abstract:The copper grade of a complex zinc smelting slag from Hubei is around 1.01%. The main occurrence state of the copper is in the form of isomorphism in pyrrhotite, then is in the iron oxide (magnetite and hematite). Gangue minerals are mainly glassiness. After researching the mineral composition and copper occurrence state, the experiments on recovery of copper were carried out for raw smelting slag samples and tailings after magnetic separation, respectively. The influence of different types of activators and collectors on copper recovery was launched. The results indicate that, using combined collectors of ammonium aerofloat + ethyl thiocarbamate for roughing process of raw smelting slag samples, adopting open-circuit flotation technological flowsheet of one roughing, two cleaning and one scavenging, copper concentrate with a copper grade of 5.10% and recovery of 66.09% can be obtained. Using collector of ammonium aerofloat for roughing process of raw smelting slag tailings after magnetic separation, adopting open-circuit flotation technological flowsheet of one roughing, two cleaning and one scavenging, copper concentrate with a copper grade of 3.45% and recovery of 57.61% can be obtained.
-
Key words:
- zinc smelting slag /
- pyrrhotite /
- magnetite /
- hematite /
- flotation
-
-
表 1 锌冶炼渣样的矿物组成
Table 1. Analysis results of mineral composition of zinc smelting slag
Mineral Pyrrhotite (Cu) Pyrite Sphalerite Magnetite-Hematite Glass_FeCaAlSiO Fayalite-Glass_FeSiO Diopside-Glass_CaSiO Plagioclase-Glass_KCaAlSiO Quartz Dolomite Hedenbergite Other Content/% 9.01 0.07 5.68 9.11 56.60 7.39 5.45 4.08 1.25 0.24 0.17 0.95 表 2 锌冶炼渣样中Cu的赋存状态
Table 2. Cu occurrence state of zinc smelting slag
Mineral Chalcopyrite Bornite Chalcocite Pyrrhotite (Cu) Sphalerite Magnetite-Hematite Glass_FeCaAlSiO Fayalite-Glass_FeSiO Diopside-Glass_CaSiO Plagioclase-Glass_KCaAlSiO Kaolinite-Glass_AlSiO Total Cu Content/% 34.5 60.1 79.8 6.58 0.79 3.05 0.10 0.13 0.03 0.06 0.05 1.01 Cu distribution/% 0.45 1.07 0.83 58.75 4.43 27.52 5.62 0.94 0.16 0.16 0.07 100 表 3 捕收剂用量对铜品位和回收率的影响
Table 3. Effect of collector dosage on copper grade and recovery
Collector dosage g/t Products Yield/% Grade/% Recovery/% 200+200 Cu rough concentrate 32.5 2.11 67.91 tailings 67.5 0.48 32.09 slag 100.00 1.01 100.00 300+200 Cu rough concentrate 36.68 2.17 78.12 tailings 63.32 0.35 21.88 slag 100.00 1.02 100.00 450+200 Cu rough concentrate 40.5 2.01 80.85 tailings 59.5 0.32 19.15 slag 100.00 1.01 100.00 300+100 Cu rough concentrate 31.94 2.28 70.39 tailings 68.06 0.45 29.61 slag 100.00 1.03 100.00 300+300 Cu rough concentrate 33.78 2.31 76.61 tailings 66.22 0.36 23.39 slag 100.00 1.02 100.00 表 4 锌冶炼渣开路浮选试验结果
Table 4. Open-circuit test results of smelting slag
Product Yield/% Cu grade/% Zn grade/% Fe grade/% Cu recovery/% Concentrate 13.34 5.10 10.05 27.37 66.09 Middling 1 6.81 1.08 1.61 23.98 7.18 Middling 2 18.92 0.61 1.19 21.96 11.16 Middling 3 17.11 0.42 0.65 16.49 7.02 Tailings 43.82 0.20 1.08 24.16 8.55 Slag 100.00 1.03 2.26 22.85 100.00 表 5 锌冶炼渣磁选尾矿开路浮选试验结果(相对磁选尾矿的试验结果)
Table 5. Open-circuit flotation test results of the tailings after magnetic separation
Product Yield/% Cu grade/% Zn grade/% Fe grade/% Cu recovery/% Concentrate 12.38 3.45 10.40 25.95 57.62 Middling 1 7.28 0.73 1.61 15.77 7.17 Middling 2 14.79 0.62 2.48 15.93 12.37 Middling 3 15.88 0.44 1.91 10.95 9.43 Tailings 49.67 0.20 1.28 14.32 13.41 Flotation feed 100.00 0.74 2.71 15.57 100.00 -
[1] 刘群.铅锌冶炼渣的资源化研究进展[J].河南化工, 2017, 34(2):11-15.
[2] 易坚, 杨晓松.铅锌冶炼行业产排污系数核算方法及应用[J].有色金属工程, 2008, 60(3):124-8.
[3] 蒋开喜.锌冶炼废渣水泥窑协同处置资源化利用的可行性分析[J].材料与冶金学报, 2020, 19(2):94-104.
[4] MANZ M, CASTRO LJ. The environmental hazard caused by smelter slags from the Sta. Maria de la Paz mining district in Mexico[J]. Environmental Pollution, 1997, 98(1):7-13.
[5] YANG Y, LI F, BI X. Lead, Zinc, and cadmium in vegetable/crops in a zinc smelting region and its potential human toxicity[J]. Bulletin of Environmental Contamination & Toxicology, 2011, 87(5):586-90.
[6] 周静, 刘周.铅锌冶炼渣性质及综合利用研究进展[J].山东化工, 2013, 42(7):58-60.
[7] YANG Y, LI F, BI X, et al. Lead, zinc, and cadmium in vegetable/crops in a zinc smelting region and its potential human toxicity[J]. Bulletin of environmental contamination and toxicology, 2011, 87(5):586.
[8] 王成彦, 陈永强.中国铅锌冶金技术状况及发展趋势:节能潜力[J].有色金属科学与工程, 2017, 8(1):1-6.
[9] 黄万抚, 王金敏, 文金磊.快速浮选提高锌渣中银回收率的试验研究[J].有色金属科学与工程, 2015, 6(5):85-90.
[10] KARAMBERI A, MOUTSATSOU A. Vitrification of lignite fly ash and metal slags for the production of glass and glass ceramics[J]. Particuology, 2006, 4(5):250-3.
[11] GBOR PK, HOQUE S, JIA CQ. Dissolution behavior of Fe, Co, and Ni from non-ferrous smelter slag in aqueous sulphur dioxide[J]. Hydrometallurgy, 2006, 81(2):130-41.
[12] 刘凯凯, 周广柱, 周静.铅锌冶炼渣性质及综合利用研究进展[J].山东化工, 2013, 42(7):58-60.
[13] 向发云, 吴永贵, 王俭.模拟不同pH值的雨水对炼锌废渣浸出毒性的影响[J].贵州大学学报(自然科学版), 2010, 27(3):134-9.
[14] 王光辉, 王海北, 张帆.铅锌冶炼渣综合回收利用研究[J].江苏理工学院学报, 2017, 23(2):7-12.
[15] 俞献林, 何发钰, 尹艳芬.某铜冶炼渣选铜试验研究[J].有色金属科学与工程, 2016, 7(6):105-9.
[16] 刘瑜, 吴彩斌, 雷存友.从冶炼渣选铜尾矿中综合回收铁新工艺研究[J].有色金属科学与工程, 2014(5):141-4.
[17] 张平.高温下浮选回收中浸渣中银的工艺及机理研究[D].赣州: 江西理工大学, 2012.
[18] 邱延省, 尹艳芬, 崔立凤.磁化浮选铜冶炼废渣中铜及其它有价金属的研究[J].矿冶工程, 2009, 29(1):34-6.
[19] 彭操, 刘江林.降低磨矿能耗技术在选矿厂中的应用剖析[J].云南化工, 2008, 35(2):65-9.
[20] 陈子凯, 吴杰.乙硫氮对含砷铜矿物的捕收特性[J].自然科学(文摘版), 2016(1):214-214.
[21] 缑明亮, 夏丹.陕西某锌冶炼厂锌冶炼渣综合利用[J].矿产综合利用, 2020(4):147-51.
-