-
摘要: 我国矿产资源的典型特点是贫、细、杂,随着粗粒嵌布矿产和富矿的日渐枯竭,微细粒矿物在不久的将来必定成为资源提取的主体,如何保证其高效回收是我国矿产资源利用面临的重大问题。本文总结了近年来微细粒分选技术的发展,深入剖析了微细粒矿物高效开发利用的瓶颈问题。增大颗粒的"表观粒径",将微细粒浮选的问题转化为常规浮选;根据颗粒与气泡的匹配性原理减小气泡尺寸和高选择性新型浮选药剂的设计与开发,依然是微细矿物浮选分离发展的重要方向。选择性磁团聚—磁选分离技术可以克服传统微细颗粒浮选在气泡颗粒碰撞效率、矿浆流变性和溶液化学环境适应性等方面的不足,具有一定潜力。但是颗粒间的碰撞、吸附、团聚和脱附过程及机制尚未形成系统的理论,其工业化应用还有很长的距离。总而言之,传统单一分选技术很难突破现有技术瓶颈,微细粒矿物高效分离问题的解决必须在交叉领域寻求突破。Abstract: The typical characteristics of mineral resources in China are low grade, fine size and complicated. Fine minerals have become an important part of the mineral resources, which may become the main body of resource extraction in the near future. The efficient exploitation and utilization of ultrafine minerals are of great significance to the mineral resources guarantee of China. In this paper the development of ultrafine minerals separation technology in recent years is summarized. The bottleneck problems of efficient utilization of ultrafine minerals are analyzed. Increasing the "apparent particle size", development of new flotation agents, and decreasing bubble size are still important directions for the flotation separation of ultrafine minerals. The selective magnetic flocculation separation technology can overcome the shortcomings of traditional fine particle flotation, such as low bubble particle collision efficiency, pulp rheology, solution chemical environment adaptability and so on. However, there is no systematic theory about the process and mechanism of particle collision, adsorption, agglomeration, and desorption yet. The industrial application is still a long way off. In a word, the traditional single separation technology is difficult to break through the bottleneck of the existing technology. The solution to the problem of efficient separation of ultrafine minerals depends on the innovation in the cross field.
-
-
图 4 颗粒粒度和粒度分布对矿浆流变学的影响[17]
Figure 4.
图 6 高分子絮凝剂吸附桥联作用机理[5]
Figure 6.
图 8 纳米气泡的气桥作用[60]
Figure 8.
-
[1] 李纲, 杨斌, 刘清华, 等.南岭成矿带西段苗儿山岩体外围钨矿成矿作用综合研究思路[J].国土资源导刊, 2014, 11(10):55-62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hunandz201410015
[2] 张曙光, 李晓阳, 张杰.兰坪难选氧化铅锌矿浮选工艺研究[J].云南冶金, 2005, 34(5):11-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ynyj200505004
[3] 陈骏, HALLS C., STANLEY C. J.湖南柿竹园钨-钼-铋-锡矿床中锡石的产状与成因[J].地质论评, 1992, 38(2):164-172. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp199202008
[4] WEI Z, HU Y, HAN H, et al. Selective separation of scheelite from calcite by self-Assembly of H2SiO3 polymer using Al3+ in Pb-BHA flotation[J]. Minerals, 2019, 9(1):43. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=MDPI000000180083
[5] 姚伟, 李茂林, 崔瑞, 等.微细粒矿物的分选技术[J].现代矿业, 2015(1):66-69, 152. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xdky201501022
[6] 李淑菲, 李强.微细粒白钨矿浮选研究现状[J].有色冶金节能, 2019, 35(3):12-15.
[7] DERVAGIN B V, DUKHIN S S, RULEV N N. Kinetic theory of the flotation of small particles[J]. Russian Chemical Reviews, 1984, 51(1):51-67.
[8] FORBES E. Shear, selective and temperature responsive flocculation:A comparison of fine particle flotation techniques[J]. International Journal of Mineral Processing, 2011, 99(1-4):1-10. doi: 10.1016/j.minpro.2011.02.001
[9] YIN W, YANG X, ZHOU D, et al. Shear hydrophobic flocculation and flotation of ultrafine Anshan hematite using sodium oleate[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(3):652-664. doi: 10.1016/S1003-6326(11)60762-0
[10] 秦煦坤, 钱玉鹏, 高惠民, 等.剪切絮凝强化浮选微细粒红柱石试验[J].金属矿山, 2017(9):115-119. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsks201709024
[11] 徐凤平, 冯其明, 张国范, 等.湖南某白钨矿浮选试验研究[J].矿冶工程, 2016, 36(2):38-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kygc201602010
[12] HUANG X, XIAO W, ZHAO H, et al. Hydrophobic flocculation flotation of rutile fines in presence of styryl phosphonic acid[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(7):1424-1432. doi: 10.1016/S1003-6326(18)64781-8
[13] FORBES E. Shear, selective and temperature responsive flocculation:A comparison of fine particle flotation techniques[J]. International Journal of Mineral Processing, 2011, 99(1):1-10. http://www.sciencedirect.com/science/article/pii/S0301751611000226
[14] FARROKHPAY S, MORRIS G E, FORNASIERO D, et al. Stabilisation of titania pigment particles with anionic polymeric dispersants[J]. Powder Technology, 2010, 202(1):143-150. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5c8b0a06f740aff395f390d98f556b8e
[15] FARROKHPAY S. The importance of rheology in mineral flotation:A review[J]. Minerals Engineering, 2012, 36-38:272-278. doi: 10.1016/j.mineng.2012.05.009
[16] LUCKHAM P F, ROSSI S. The colloidal and rheological properties of bentonite suspensions[J]. Advances in Colloid and Interface Science, 1999, 82(1):43-92. http://www.sciencedirect.com/science/article/pii/S0001868699000056
[17] SHI F N, NAPIER-MUNN T J. A model for slurry rheology[J]. International Journal of Multiphase Flow, 1997, 23(7):64.
[18] CHEN W, CHEN F, BU X, et al. A significant improvement of fine scheelite flotation through rheological control of flotation pulp by using garnet[J]. Minerals Engineering, 2019, 138:257-266. doi: 10.1016/j.mineng.2019.05.001
[19] LASKOWSKI J, NDLOVU B, KILICKAPLAN I. Rheology of aqueous suspensions of needle-like mineral particles[J]. Proc 8th UBC-McGill-UA International Symposium on the Fundamentals of Mineral Processing:Rheology and Processing of Fine Particles, 2010:193-203. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0210485614
[20] NG W S, SONSIE R, FORBES E, et al. Flocculation/flotation of hematite fines with anionic temperature-responsive polymer acting as a selective flocculant and collector[J]. Minerals Engineering, 2015, 77:64-71. doi: 10.1016/j.mineng.2015.02.013
[21] HAO H, LI L, SOMASUNDARAN P, et al. Adsorption of pregelatinized starch for selective flocculation and flotation of fine siderite[J]. Langmuir, 2019, 35(21):6878-6887. doi: 10.1021/acs.langmuir.9b00669
[22] 杨招君, 徐晓衣, 袁祥奕.低品位锡细泥选择性絮凝浮选试验研究[J].中国矿业, 2019, 28(S1):212-215. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgky2019z1057
[23] 潘庆庆, 彭会清.用新型絮凝剂PG改善某钨细泥的浮选效果[J].金属矿山, 2018(5):98-102. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsks201805023
[24] 李树磊.微细粒辉钼矿选择性絮凝-浮选基础研究[D].徐州: 中国矿业大学, 2018.
[25] ZOU W, GONG L, HUANG J, et al. Adsorption of hydrophobically modified polyacrylamide P(AM-NaAA-C16DMAAC) on model coal and clay surfaces and the effect on selective flocculation of fine coal[J]. Minerals Engineering, 2019, 142:105887. doi: 10.1016/j.mineng.2019.105887
[26] LI L, HAO H, YUAN Z, et al. Regulating effects of citric acid and pregelatinized starch on selective flocculation flotation of micro-fine siderite[J]. Journal of Molecular Liquids, 2020, 315:113726. doi: 10.1016/j.molliq.2020.113726
[27] GREENE E W, DUKE J B. Selective froth flotation of ultrafine minerals or slimes[J]. Trans. AIME, 1962, 223:389-395.
[28] S·科卡, 周廷熙.从高岭土中载体浮选明矾石[J].国外金属矿选矿, 2001(9):42-45. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gwjskxk200109010
[29] 陈秀珍.疏水性聚合物对细粒级白钨矿载体浮选的工艺和机理研究[D].长沙: 中南大学, 2014.
[30] 冷文华, 朱龙华, 冯其明.钨矿物浮选研究进展[J].矿产保护与利用, 1999(5):3-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199900998308
[31] ZHOU S, WANG X, BU X, et al. A novel flotation technique combining carrier flotation and cavitation bubbles to enhance separation efficiency of ultra-fine particles[J]. Ultrasonics Sonochemistry, 2020, 64(105005):105005. http://www.sciencedirect.com/science/article/pii/S1350417719315597
[32] ZHANG X, HU Y, SUN W, et al. The effect of polystyrene on the carrier flotation of fine smithsonite[J]. Minerals, 2017, 7(524). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=MDPI000000189321
[33] 肖骏, 陈代雄.聚苯乙烯载体浮选微细粒白钨矿研究[J].中国钨业, 2015, 30(6):14-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgwy201506004
[34] 梁瑞禄, 沼田芳明, 藤田丰久, 等.关于微细粒锡矿石载体浮选的研究——不同载体种类的影响[J].国外金属矿选矿, 1999(8):7-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199900376937
[35] 邱冠周, 胡岳华, 王淀佐.微细粒赤铁矿载体浮选机理研究[J].有色金属, 1994(4):23-28.
[36] 朱阳戈.微细粒钛铁矿浮选理论与技术研究[D].长沙: 中南大学, 2012.
[37] 王纪镇.复杂难处理白钨矿浮选分离的强化及其机理研究[D].沈阳: 东北大学, 2015.
[38] 王纪镇, 印万忠, 孙忠梅.碳酸钠对白钨矿自载体浮选的影响及机理[J].工程科学学报, 2019, 41(2):174-180. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjkjdxxb201902003
[39] 胡为柏, 王淀佐, 邱冠周.分支载体浮选的理论与实践[J].中南矿冶学院学报, 1987(4):408-414.
[40] 李天霞, 张晓峰, 张适合, 等.河北某铜尾矿综合回收铜的选矿试验研究[J].有色金属(选矿部分), 2019(2):17-22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysjs-xk201902004
[41] 秦永红, 杨光, 马自飞, 等.某微细粒级混磁精矿载体浮选试验研究[J].金属矿山, 2019(2):76-80. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsks201902016
[42] XING Y, GUI X, PAN L, et al. Recent experimental advances for understanding bubble-particle attachment in flotation[J]. Advances in Colloid and Interface Science, 2017, 246:105-132. doi: 10.1016/j.cis.2017.05.019
[43] 何桂春, 王玉彤, 康倩.纳米技术在微细粒矿物浮选中的应用[J].有色金属科学与工程, 2015, 6(2):57-62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxysjs201502011
[44] FAN M, TAO D, HONAKER R, et al. Nanobubble generation and its application in froth flotation (part I):nanobubble generation and its effects on properties of microbubble and millimeter scale bubble solutions[J]. Mining Science and Technology (China), 2010, 20(1):1-19. doi: 10.1016/S1674-5264(09)60154-X
[45] 岳双凌, 廖寅飞, 马子龙.选择性絮凝-柱浮选回收钼精选尾矿中的微细粒辉钼矿[J].矿产综合利用, 2018(5):52-57. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kczhly201805011
[46] 刘炯天, 李小兵, 王永田, 等.旋流-静态微泡浮选柱浮选某难选钼矿的试验研究[J].中南大学学报(自然科学版), 2008(2):300-306. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zngydxxb200802017
[47] FARROKHPAY S, FILIPPOVA I, FILIPPOVA L, et al. Flotation of fine particles in the presence of combined microbubbles and conventional bubbles[J]. Minerals Engineering, 2020, 155:106439. doi: 10.1016/j.mineng.2020.106439
[48] CALGAROTO S, AZEVEDO A, RUBIO J. Flotation of quartz particles assisted by nanobubbles[J]. International Journal of Mineral Processing, 2015, 137:64-70. doi: 10.1016/j.minpro.2015.02.010
[49] R A F, RUBIO J. On the role of nanobubbles in particle-bubble adhesion for the flotation of quartz and apatitic minerals[J]. Minerals Engineering, 2018, 127:178-184. doi: 10.1016/j.mineng.2018.08.020
[50] 廖世双, 欧乐明, 周伟光.空化过程微纳米气泡性质及其对细粒矿物浮选的影响[J].中国有色金属学报, 2019, 29(7):1567-1574. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgysjsxb201907025
[51] 陈冲.某风化白钨细泥高效回收试验研究[D].徐州: 中国矿业大学, 2015.
[52] 黄光耀, 冯其明, 欧乐明, 等.利用微泡浮选柱从浮选尾矿中回收微细粒级白钨矿[J].中南大学学报(自然科学版), 2009, 40(2):263-267. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zngydxxb200902001
[53] YOON R H, LUTTREL G H. The effect of bubble size on fine particle flotation[J]. Mineral Processing and Extractive Metallurgy Review, 1989, 5(1-4):101-122. doi: 10.1080/08827508908952646
[54] XING Y, XU M, GUO F, et al. Role of different types of clay in the floatability of coal:Induction time and bubble-particle attachment kinetics analysis[J]. Powder Technology, 2019, 344:814-818. doi: 10.1016/j.powtec.2018.12.074
[55] FAN M, TAO D, HONAKER R, et al. Nanobubble generation and its applications in froth flotation (part Ⅲ):specially designed laboratory scale column flotation of phosphate[J]. Mining Science and Technology (China), 2010, 20(3):317-338. doi: 10.1016/S1674-5264(09)60205-2
[56] XIAO W, ZHAO Y, YANG J, et al. Effect of sodium oleate on the adsorption morphology and mechanism of nanobubbles on the mica Surface[J]. Langmuir, 2019, 35(28):9239-9245. doi: 10.1021/acs.langmuir.9b01384
[57] 冯其明, 周伟光, 石晴.纳米气泡的形成及其对微细粒矿物浮选的影响[J].中南大学学报(自然科学版), 2017, 48(1):9-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zngydxxb201701002
[58] AHMADI R, KHODADADI D A, ABDOLLAHY M, et al. Nano-microbubble flotation of fine and ultrafine chalcopyrite particles[J]. International Journal of Mining Science and Technology, 2014, 24(4):559-566. doi: 10.1016/j.ijmst.2014.05.021
[59] HAMPTON M A, NGUYEN A V. Nanobubbles and the nanobubble bridging capillary force[J]. Advances in Colloid and Interface Science, 2010, 154(1-2):30-55. doi: 10.1016/j.cis.2010.01.006
[60] AHMADI R, KHODADADI D A, ABDOLLAHY M, et al. Nano-microbubble flotation of fine and ultrafine chalcopyrite particles[J]. International Journal of Mining Science and Technology, 2014, 24(4):559-566. doi: 10.1016/j.ijmst.2014.05.021
[61] ZHOU W, CHEN H, OU L, et al. Aggregation of ultra-fine scheelite particles induced by hydrodynamic cavitation[J]. International Journal of Mineral Processing, 2016, 157:236-240. doi: 10.1016/j.minpro.2016.11.003
[62] 程建国.应用基团电负性理论计算和同分异构原理发展新型锡石捕收剂[J].矿冶工程, 1986(4):18-21.
[63] 王淀佐, 林强, 蒋玉仁.选矿与冶金药剂分子设计[M].长沙:中南工业大学出版社, 1996.
[64] 王帅, 王明月, 杨佳, 等.有机磷选冶药剂的合成与应用[J].矿产保护与利用, 2020, 40(2):1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcbhyly202002001
[65] WANG S. S., AVOFINS P. V., 王淀佐.二烷基二硫代次膦酸在硫化矿浮选中的应用[J].国外金属矿选矿, 1984(9):41-47.
[66] 杨晓玲, 王淀佐.二烷基硫化磷酸铵的捕收性能[J].山东冶金, 1997, 019(4):32-34, 49. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199701023170
[67] 林强, 杨晓玲, 王淀佐.一类螯合捕收剂α-肟基膦酸酯的制备及其结构与性能的关系[J].过程工程学报, 1997(4):312-317. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700219401
[68] HAN H, XIAO Y, HU Y, et al. Replacing Petrov's process with atmospheric flotation using Pb-BHA complexes for separating scheelite from fluorite[J]. Minerals Engineering, 2020, 145:106053. doi: 10.1016/j.mineng.2019.106053
[69] 孙宁, 高建德, 于凯, 等.镁离子对钼尾矿中石英和长石浮选分离的影响研究[J].矿产保护与利用, 2020, 40(2):30-35. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcbhyly202002005
[70] 孙青, 王帅, 钟宏.肟类选冶药剂的合成与应用[J].矿产保护与利用, 2020, 40(2):10-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcbhyly202002002
[71] 梁欢, 代典, 何东升, 等.α-磺酸基棕榈酸捕收剂的合成及其对白云石和氟磷灰石的分选性能研究[J].矿产保护与利用, 2020, 40(2):23-29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcbhyly202002004
[72] 艾光华, 吴燕玲, 周源, 等.组合捕收剂从含钙矿物浮选体系中回收微细粒白钨矿[J].有色金属工程, 2014, 4(6):44-47. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysjs201406014
[73] 罗思岗, 赵志强, 刘建远, 等.新型捕收剂BKG721在贵金属矿浮选中的应用研究[J].有色金属(选矿部分), 2018(4):85-88. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysjs-xk201804018
[74] HE T, LI H, JIN J, et al. Improving fine molybdenite flotation using a combination of aliphatic hydrocarbon oil and polycyclic aromatic hydrocarbon[J]. Results in Physics, 2019, 12:1050-1055. doi: 10.1016/j.rinp.2018.12.010
[75] 胡文英.组合捕收剂浮选微细粒黑钨矿作用机理与应用研究[D].赣州: 江西理工大学, 2013.
[76] 徐龙华, 田佳, 巫侯琴, 等.组合捕收剂在矿物表面的协同效应及其浮选应用综述[J].矿产保护与利用, 2017(2):107-112. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcbhyly201702020
[77] LUO L, NGUYEN A V. A review of principles and applications of magnetic flocculation to separate ultrafine magnetic particles[J]. Separation and Purification Technology, 2017, 172:85-99. doi: 10.1016/j.seppur.2016.07.021
[78] 唐雪峰, 陈雯, 余永富, 等.细粒铁矿选矿中选择性絮凝的研究与应用[J].金属矿山, 2010(9):44-46. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsks201009010
[79] 周艳飞.疏水团聚-磁种法从赤泥中回收铁及机理研究[D].长沙: 中南大学, 2009.
[80] 张汉泉, 周峰, 殷佳琪, 等.选择性絮凝-磁种法在微细粒人工磁铁矿磁选中的团聚效应[J].矿冶, 2019, 28(4):42-50.
[81] LU J, YUAN Z, WANG N, et al. Selective surface magnetization of pentlandite with magnetite and magnetic separation[J]. Powder Technology, 2017, 317:162-170. doi: 10.1016/j.powtec.2017.04.031
[82] GOGOI M, BORUAH P, SENGUPTA P, et al. Separation of ultrafine chalcogenide particles using Fe3O4 magnetic nanoparticles and ligands with metal selectivity[J]. Minerals Engineering, 2019, 137:147-156. doi: 10.1016/j.mineng.2019.04.004
[83] 欧阳超, 卢毅屏, 冯其明, 等.油酸钠作用下磁铁矿与硫化矿物间异相聚团研究[J].矿冶工程, 2018, 38(2):34-37. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kygc201802008
[84] 胡岳华, 邱冠周, 王淀佐.细粒浮选体系中扩展的DLVO理论及应用[J].中南矿冶学院学报, 1994(3):310-314. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400626838
[85] GRAY S R, LANGBERG D E, GRAY N B. Fine mineral recovery with hydrophobic magnetite[J]. International Journal of Mineral Processing, 1994, 41(3-4):183-200. doi: 10.1016/0301-7516(94)90027-2
[86] ANASTASSAKIS G N. Separation of fine mineral particles by selective magnetic coating[J]. Journal of Colloid & Interface Ence, 2002, 256(1):114-120.
-