Effect of Insulation Slow Cooling on Crystallization Performance of Copper Slag and Copper Flotation
-
摘要:
针对我国某冶炼厂的缓冷铜渣,以保温时间和降温速率为变量,研究了保温缓冷制度对铜渣浮选回收铜指标的影响;采用扫描电镜分析了保温时间和降温速率对高温铜渣结晶性能的影响。研究发现:在保温时间为2 h、降温速率为2℃/min的最佳冷却条件下可获得铜品位为8.206%、铜综合回收率为66.95%的铜精矿;适合的保温时间能够让含铜矿物颗粒在熔融状态下充分聚集形成易浮铜相;降温速率越缓慢,渣中含铜相结晶粒度越大,并且铜的赋存相与其他脉石矿物相的嵌布关系更简单。因此,合理的缓慢冷却制度有利于优化缓冷铜渣浮选回收铜的指标。
Abstract:Aiming at the slow cooling copper slag of a smelting plant in China, the effects of insulation and slow cooling system on copper recovery index of copper slag flotation were studied by taking holding time and cooling rate as variables. The effects of holding time and cooling rate on the crystallization performance of high temperature copper slag were analyzed by scanning electron microscopy. It was found that copper concentrate with copper grade of 8.206% and copper recovery of 66.95% can be obtained under the optimum cooling conditions of holding time of 2 h and cooling rate of 2℃/min. The appropriate holding time could make the copper-bearing mineral particles fully aggregate in the melting state to form floating copper phase. It was also found that the slower the cooling rate was, the crystalline grain size of copper-bearing phase in slag was larger and the distribution relationship between copper and other gangue mineral phases was simpler. Therefore, a reasonable slow cooling system is conducive to optimizing the index of copper recovery from slow cooling copper slag by flotation.
-
Key words:
- copper slag /
- flotation /
- holding time /
- cooling rate /
- crystallization performance
-
-
表 1 试样主要化学成分分析结果
Table 1. Main chemical composition analysis results of the sample
Element Cu Fe SiO2 Al2O3 MgO Pb Zn S Content/% 1.42 40.75 30.15 3.98 1.49 0.33 1.83 0.35 表 2 试样中矿物的含量分析
Table 2. Content analysis results of minerals in the sample
Mineral Formula Content /% Metallic copper Cu 0.02 Copper-sulfur minerals Minerals rich in copper and sulfur 1.09 Copper-arsenic minerals Minerals rich in copper and arsenic 0.51 Magnetite Fe3O4 19.96 Fayalite Fe2SiO4 45.30 Glassy silicates Fe, Al- silicates 32.56 Other — 0.56 表 3 不同细度下含铜矿物解离度分析结果
Table 3. Dissociation degree analysis results of copper-bearing mineral with different fineness
Mineral Fineness /%
(-0.045 mm)Single particle
content /%Intergrowth content /% >3/4 3/4~1/2 1/2~1/4 <1/4 Metallic copper 82.0 71.74 7.50 3.22 3.84 13.70 95.0 76.92 5.38 3.87 3.73 10.10 98.0 77.23 5.71 4.52 3.54 9.00 Copper-sulfur minerals 82.0 57.33 15.38 5.28 5.70 16.31 95.0 66.31 12.14 4.71 4.91 11.93 98.0 67.58 12.09 4.35 4.73 11.25 Copper-arsenic minerals 82.0 64.13 12.93 6.58 3.82 12.54 95.0 78.64 4.38 3.39 3.52 10.07 98.0 81.16 4.41 3.22 3.41 7.80 -
[1] 李博, 王华, 胡建杭, 等.从铜渣中回收有价金属技术的研究进展[J].矿冶, 2009, 18(1):44-48. http://d.old.wanfangdata.com.cn/Periodical/ky200901011
[2] 王俊博, 范蕾, 李新, 等.基于物质流方法的中国铜资源社会存量研究[J].资源科学, 2016, 38(5):939-947. http://d.old.wanfangdata.com.cn/Periodical/zykx201605013
[3] 顾晓薇, 胥孝川, 王青, 等.世界铜资源格局[J].金属矿山, 2015(3):8-13. doi: 10.3969/j.issn.1671-8550.2015.03.004
[4] 吕兵超, 廖银英, 方娴, 等.某铜渣浮选药剂优化试验研究[J].有色金属(选矿部分), 2018(6):7-11. doi: 10.3969/j.issn.1671-9492.2018.06.002
[5] 姜平国, 吴朋飞, 胡晓军, 等.铜渣综合利用研究现状及其新技术的提出[J].中国矿业, 2016, 25(2):76-79. doi: 10.3969/j.issn.1004-4051.2016.02.014
[6] 陈远望.智利铜炉渣贫化方法概述[J].世界有色金属, 2001(9):53-58. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjysjs200109013
[7] 江明丽, 李长荣.炼铜炉渣的贫化及资源化利用[J].中国有色冶金, 2009(3):57-60. doi: 10.3969/j.issn.1672-6103.2009.03.017
[8] 赵凯, 程相利, 齐渊洪, 等.铜渣处理技术分析及综合利用新工艺[J].中国有色冶金, 2012, 41(1):56-60. doi: 10.3969/j.issn.1672-6103.2012.01.016
[9] 王琛, 田庆华, 王亲猛, 等.铜渣有价金属综合回收研究进展[J].金属材料与冶金工程, 2014, 42(6):50-56. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnyj201406013
[10] 廖宁宁, 李献帅, 鄢发明, 等.浮选回收某缓冷铜冶炼渣中的铜[J].金属矿山, 2017(5):189-192. doi: 10.3969/j.issn.1001-1250.2017.05.037
[11] 徐明.铜冶炼炉渣浮选回收铜的初步研究[D].沈阳: 东北大学, 2009.
http://cdmd.cnki.com.cn/Article/CDMD-10145-1012299994.htm [12] 朱海锋.铜炉渣矿物学特性及浮选基础研究[D].长沙: 中南大学, 2014.
http://cdmd.cnki.com.cn/Article/CDMD-10533-1014398795.htm [13] 王俊娥, 陈杭, 衷水平, 等.缓冷制度对铜渣结晶性能的影响[J].有色金属(冶炼部分), 2017(11):32-37. doi: 10.3969/j.issn.1007-7545.2017.11.008
[14] 汪永红.缓冷制度对铜冶炼炉渣选矿指标的影响[J].有色冶金节能, 2018, 34(5):23-25. doi: 10.3969/j.issn.1008-5122.2018.05.007
[15] 李思勇.铜冶炼渣包冷却制度的建立[J].有色金属(冶炼部分), 2017(11):42-45. doi: 10.3969/j.issn.1007-7545.2017.11.010
[16] SARRAFI A, RAHMATI B, HASSANI HR, et al. Recovery of copper from reverberatory furnace slag by flotation[J]. Minerals Engineering, 2004, 17(3):457-459. doi: 10.1016/j.mineng.2003.10.018
[17] 张海鑫.浅谈铜冶炼渣缓冷工艺[J].中国有色冶金, 2013, 42(3):32-33, 37. doi: 10.3969/j.issn.1672-6103.2013.03.008
[18] 郭正启.熔融改性强化铜渣铜铁分离技术的研究[D].长沙: 中南大学, 2014.
http://cdmd.cnki.com.cn/Article/CDMD-10533-1014410080.htm -