钢铁渣制备硅肥过程中硅的活化技术评述

刘洋, 张春霞. 钢铁渣制备硅肥过程中硅的活化技术评述[J]. 矿产保护与利用, 2019, 39(1): 144-149. doi: 10.13779/j.cnki.issn1001-0076.2019.01.026
引用本文: 刘洋, 张春霞. 钢铁渣制备硅肥过程中硅的活化技术评述[J]. 矿产保护与利用, 2019, 39(1): 144-149. doi: 10.13779/j.cnki.issn1001-0076.2019.01.026
LIU Yang, ZHANG Chunxia. The Review of Activation Techniques of Silicon in Iron and Steel Slag Silicon Fertilizer Preparation Process[J]. Conservation and Utilization of Mineral Resources, 2019, 39(1): 144-149. doi: 10.13779/j.cnki.issn1001-0076.2019.01.026
Citation: LIU Yang, ZHANG Chunxia. The Review of Activation Techniques of Silicon in Iron and Steel Slag Silicon Fertilizer Preparation Process[J]. Conservation and Utilization of Mineral Resources, 2019, 39(1): 144-149. doi: 10.13779/j.cnki.issn1001-0076.2019.01.026

钢铁渣制备硅肥过程中硅的活化技术评述

  • 基金项目:
    国家科技支撑计划课题《冶金废弃渣综合利用技术及装备研究与示范》(2013BAB03B03)
详细信息
    作者简介: 刘洋(1985-), 女, 博士研究生, 主要从事冶金生产过程中固体废弃物回收利用研究
  • 中图分类号: X757

The Review of Activation Techniques of Silicon in Iron and Steel Slag Silicon Fertilizer Preparation Process

  • 硅是水稻生长的必需元素。钢铁渣是生产硅肥的良好原料,利用钢铁渣生产硅肥是一种有前途的、可供选择的钢铁行业固体副产物处理途径。为提高硅肥使用效率,在钢铁渣生产硅肥过程中需要对其中的硅进行活化提高有效硅含量。钢铁渣制备硅肥过程中有效硅的活化技术可分为三类:机械活化、热化学活化和化学活化,对这三类活化技术的优缺点进行了讨论。未来钢铁渣中有效硅的活化技术需要满足大批量、高效、多样化的生产需求。

  • 加载中
  • 表 1  钢铁渣制备硅肥研究进程

    Table 1.  Research process of silicon fertilizer prepared from iron and steel slag

    年份 国家 用途 活化方法 文献
    1928 美国 酸碱度土壤调理剂 机械活化 [7]
    1930 德国 酸碱度土壤调理剂 机械活化 [8-13]
    1955 日本 硅肥 机械活化 [14]
    1958 中国 硅肥 机械活化 [15]
    1980 日本 缓释性硅钾肥 热化学活化 [16-18]
    2004 中国 硅肥 机械活化 [19]
    下载: 导出CSV

    表 2  钢铁渣化学活化效果对比

    Table 2.  Comparison of chemical activation effects of iron and steel slag

    活化介质 活化剂 初始粒度/mm 活化剂量(相对原料密量) 处理温度 处理时间 最终粒径/mm 辅助处理条件 效果 文献
    浓H2SO4/HCl ≤2 6%~10% - ≥12 h - 酸处理后加碱中和 有效硅14%~21% [45]
    浓度为25%~32%的H2SO4/HNO3/H3PO4 ≤0.2 60%~80% 30~40 ℃ 1~2 d - 40~80 ℃下干燥 提高产量、改善植株生长、改良果实外观、口味 [46]
    浓度为85%的H3PO4 ≤0.075 5%~20% - 30 min ≤0.5 活化剂用量1.25倍的水稀释,100 ℃下干燥 有效硅含量最高由2 mg/g提高23 mg/g [47]
    有机碱(黑液、木质素磺酸钠等) - 3%~15%及9%~15%的水 微波:600~900 W 研磨:5~30 min微波:1~30 min - 60~90 ℃下干燥30~60 min 水溶性硅含量增幅显著 [48]
    硫酸铵盐类 0.060~0.160 3倍~20倍 200~500 ℃ 10~60 min - 保温后,水中溶解,过滤; 滤液调和成叶面肥 得到固体肥及叶面肥,肥效稳定、易于储存 [49-51]
    水蒸气 ≤40 100% 100~300 ℃ 蒸气中:1~4 d大气中:30 d ≤0.3 有效元素含量高,易于土中崩解,利于长期储存 [52]
    - 1倍~10倍 - 4~10 h ≤2 蒸气压6~15 kg/cm2 可溶性硅含量大于30% [53]
    注:-表示未提及。
    下载: 导出CSV

    表 3  钢铁渣有效硅活化技术分类及特点对比

    Table 3.  Classification and comparison of available silicon activation techniques for iron and steel slag

    技术 活化方法 活化介质 目的 优点 缺点
    机械活化 研磨 —— 增大钢铁渣的比表面积 工艺简单 活化效果不明显,有效成分随初始炉渣成分波动
    研磨+活化剂 碱性物质,石灰、生石灰、转炉渣等 增大钢铁渣的比表面积 工艺简单,pH值提高,适合酸性土壤应用。 活化效果不明显,有效成分随初始炉渣成分波动
    热化学活化 熔态调质 1.含植物有益元素的物质;2.石灰、生石灰 1.使植物有益元素枸溶,减少流失;2.调整炉渣矿物结构,调整有效硅含量 可以利用熔融炉渣的热量 有效成分因参数选择差异波动
    化学活化 酸、碱、盐溶液或水蒸气处理 酸、碱、盐溶液或水蒸气 促进矿物风化,加速炉渣的有效元素浸出 整体活化效果较好 时间长、能耗高,大多数在烘干后,需要二次研磨
    下载: 导出CSV
  • [1]

    虞国平.水稻在我国粮食安全中的战略地位分析[J].新西部(下半月), 2009(11), 22:31-33. doi: 10.3969/j.issn.1009-8607-B.2009.11.025

    [2]

    宁东峰.钢渣硅钙肥高效利用与重金属风险性评估研究[D].北京: 中国农业科学院, 2014.http://cdmd.cnki.com.cn/Article/CDMD-82101-1014327016.htm

    [3]

    Fabrício A Rodrigues, Lawrence E Datnoff. Silicon and rice disease management[J]. Fitopatol bras, 2005, 30(5):457-469. doi: 10.1590/S0100-41582005000500001

    [4]

    Fabrício á. Rodrigues, Wayne M. Jurick, Lawrence E, et al. Silicon influences cytological and molecular events incompatible rice-magnaporthe grisea interactions[J]. Physiological and molecular plant pathology, 2005, 66(4):144-159. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ022138642/

    [5]

    马同生.我国水稻土中硅素丰缺原因[J].土壤通报, 1997(4):169-171. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700555189

    [6]

    Cai Delong. Boundless prospect of silicon fertilizers[J]. China chemical reporter, 2008, 15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200802857834

    [7]

    J. S. H. Blast furnace slag as a fertilizer[J]. Journal of the franklin institute, 1928, 206(1):16-16. http://www.sciencedirect.com/science/article/pii/S0016003228907267

    [8]

    高橋達人, 薮田和哉.鉄鋼スラグ利材化技術[J].NKK技報, 2002, 178:43-48. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ04962717/

    [9]

    君和田健二, 平田熙.アカクローバおよびイタリアンライグラスの生長とリン含有率に及ぼす高炉滓中の硫化物の影響[J].日本土壌肥料学雑誌, 1991, 62:614-620. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=J-STAGE_1096868

    [10]

    Abdelhak M. Ramadan N., Abdelkarim H. Uses of blast furnace slag as complex fertilizer[J]. J. chem. chem. eng, 2012, 6(9): 853-859. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201205704035

    [11]

    Gary J Gascho. Silicon sources for agriculture[J].Studies in plant science, 2001, 8(1):197-207.

    [12]

    Crane F H. A comparison of some effects of blast furnace slag and of limestone on an acid soil[J]. Journal of the American society of agronomy, 1930(11):968-973. http://agris.fao.org/openagris/search.do?recordID=US201301762318

    [13]

    Geiseler J., Kuehn M.钢铁渣肥料[C]//冶金渣处理与利用国际研讨会文集.北京: 中国金属学会, 1999.

    [14]

    農林水産省.肥料取締法に基づき普通肥料の公定規格を定める等の件[S].埼玉県さいたま市: 独立行政法人農林水産消費安全技術センター, 平成, 2014-09-07.

    [15]

    朱淇, 陈恩鳳.钢铁炉渣的性质及施用于不同土类中对农作物的作用[J].土壤学报, 1963, 11(1):70-83. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000003129895

    [16]

    Andou H., Honda A., Satou K.I. Apparatus for producing glassy blast furnace slag: JP55054026[P]. 1980-04-21.

    [17]

    Y Tokunaga. Potassium silicate:A slow-release potassium fertilizer[J]. Fertilizer research, 1991, 30(1):55-59. http://d.old.wanfangdata.com.cn/Periodical/zgyckx201306011

    [18]

    八尾泰子, 松原健次, 高橋達人.鉄鋼スラグから製造した緩効性カリ肥料の特性[J].日本土壌肥料學雜誌, 2001, 72(1):25-32.

    [19]

    农业部.硅肥标准NY/T 797-2004[S].北京: 中国标准出版社, 2004-04-16.

    [20]

    何电源, 臧惠林, 张效朴.炉渣作为硅肥在红壤性水稻土上的效应[J].土壤学报, 1980, 17(4):355-364. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000003130098

    [21]

    臧惠林.硅肥对水稻的增产效应和硅肥资源的研究[J].化肥工业, 1989, (4):12-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000001945022

    [22]

    杨丹, 刘鸣达, 姜峰, 等.酸性和中性水田土壤施用硅肥的效应研究I.对土壤pH、Eh及硅动态的影响[J].农业环境科学学报, 2012, 31(4):757-763. http://d.wanfangdata.com.cn/Periodical/nyhjbh201204017

    [23]

    王强.钢渣活性激发的研究进展[J].商品混凝土, 2010(5):26-28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201000477329

    [24]

    许远辉, 陆文雄, 王秀娟, 等.钢渣活性激发的研究现状与发展[J].上海大学学报(自然科学版), 2004, 10(1):91-95. doi: 10.3969/j.issn.1007-2861.2004.01.021

    [25]

    太田道雄, 長沼孝文.珪酸塩類の肥料学的価値(第40報): 鉱滓の粒度が水稲の収量に及ぼす影響について(其の2)[R].日本土壌肥料学会関東支部会講演要旨, 1955.

    [26]

    Takahashi K. Effects of slags on the growth and the silicon uptake by rice plants and the available silicates in paddy soils[J]. Bulletin of the shikoku agricultural experiment station, 1981, 38:75. http://agris.fao.org/agris-search/search.do?recordID=US201302190055

    [27]

    Segawa Hiroshi, Akizuki Katsufumi. Process for producing potassium silicate fertilizer and apparatus for practicing said process: US4313753A[P].1982-02-02.

    [28]

    汤章其.利用高炉渣开发硅肥[J].中国资源综合利用, 2001, 13(2):17-18. http://d.old.wanfangdata.com.cn/Periodical/fmh200104013

    [29]

    李绍康, 郑煜基, 乐国彪, 等.一种以炼铁高炉水淬渣为原料生产硅钙镁肥料的方法: CN102391021A[P].2012-03-28.

    [30]

    Yamada Koji, Nishimura Kenichi. Production of slag fertilizer: JP07277868[P].1995-10-24.

    [31]

    李光辉, 姜涛, 范晓慧, 等.伊利石中硅的热化学活化与脱除[J]金属矿山, 2004(7), 18-21, 24. doi: 10.3321/j.issn:1001-1250.2004.07.006

    [32]

    彭期华.用喷粉方法处理熔渣生产高价值炉渣制品: CN85101592[P].1987-01-10.

    [33]

    陈广言, 丁陈来, 邱艳生, 等.一种复合型颗粒缓释硅肥的生产方法: CN101260012[P].2008-09-10.

    [34]

    Urano Teruo, Sato Yuya. New potassium phosphate compound fertilizer and its production method: JP2008105898[P]. 2008-05-08.

    [35]

    岩崎正树, 吹上和德, 松本周.硅肥及其制造方法: CN1364749A[P].2002-8-21.

    [36]

    Iwasaki Masaki, Fukiage kazunori, Matsumoto Shu. Siliceous fertilizer and method for manufacturing silicic acid fertilizer: JP2001261471[P]. 2001-09-26.

    [37]

    Iwasaki Masaki, Fukiage kazunori, Matsumoto Hiroshi. Silicic fertilizer and production method thereof: US2002007656[P]. 2002-01-24.

    [38]

    Anon. Raw material for silicate phosphate fertilizer and method for production thereof: WO03037824[P].2003-05-08.

    [39]

    Anon. Raw material for silicate fertilizer and method for production thereof: WO03037825[P]. 2003-05-08.

    [40]

    Takahashi Tstsuto, Kato makoto, Matsubara Kenji, et al. Slow-release potassium fertilizer: JP11060359[P].1999-03-02.

    [41]

    Kawashima takeshi, Watanabe Keiji. Production of slowly available potash fertilizer: JP2000226283[P]. 2000-08-15.

    [42]

    Kawashima takeshi, Watanabe Keiji, Isoo Norio, et al. Production of citric soluble potash fertilizer: JP2000226284[P]. 2000-08-15.

    [43]

    任玉森, 张宏伟, 顾德仁, 等.钢渣在农业领域的应用研究(一)[J].宝钢技术, 2005(3):61-63. doi: 10.3969/j.issn.1008-0716.2005.03.018

    [44]

    范立瑛, 王志.高岭土对脱硫石膏-钢渣复合材料性能的影响[J].硅酸盐通报, 2010, 29(4):784-788. http://d.old.wanfangdata.com.cn/Periodical/gsytb201004007

    [45]

    邵建华.综合利用废弃资源联产超细氧化铁和中微量元素复合肥: CN1386709[P].2002-12-25.

    [46]

    王岐山, 马同生, 黄胜海, 等.多效硅肥及生产工艺: CN1112536[P].1995-11-29.

    [47]

    李荣田.一种复混肥及其制备方法: CN1229070A[P].1999-09-22.

    [48]

    Taniguchi hidemi, Maekawa Takaharu, Inazu asamu. High silica fertilizer: JP2000264768[P]. 2000-09-26.

    [49]

    薛向欣, 张悦, 杨合, 等.用含钛高炉渣制备固态钛钙硫镁铁氮硅复合肥料的方法: CN101125772[P].2008-02-20.

    [50]

    东北大学.用水淬含钛高炉渣制备固态钙镁钛铁硫氮硅复合肥的方法: CN200810011305.7[P].2008-05-08.

    [51]

    廖宗文, 刘辉, 毛小云, 等.一种富硅矿物硅肥的理化综合促释制备方法: CN102757274A[P].2012-10-31.

    [52]

    薛向欣, 张悦, 杨合, 等.用含钛高炉渣制钾氮硫镁钛铁硅叶面肥和钙硫硅肥的方法: CN101429068A[P]. 2009-05-13.

    [53]

    Hirano takahiro, Yaegashi Kiso, Sawada Tsutomu, et al. Method of producing iron-and-steel slag fertilizer: JP2008247665[P].2008-10-16.

    [54]

    Tano Shigeo, Fukudo hajime.Calcium silicate fertilizer composition: JP01226785[P].1989-09-11.

    [55]

    Higgins D. Soil stabilisation with ground granulated blastfurnace slag[J]. UK cementitious slag makers association, 2005, 27(5):801-809.

    [56]

    Tasong WA, Wild S, Tilley RJD. Mechanisms by which ground granulated blastfurnace slag prevents sulphate attack of lime-stabilised kaolinite[J]. Cement and concrete research, 1999, 29(7):975-982. doi: 10.1016/S0008-8846(99)00007-1

    [57]

    Haynes J R, Belyaeva ON, Kingston G. Evaluation of industrial wastes as sources of fertilizer silicon using chemical extractions and plant uptake[J]. J. plant nutr. soil sci. 2013, 176(2):238-248. doi: 10.1002/jpln.v176.2

    [58]

    Sebastian Dennis, Rodrigues Hugh, Kinsey Charles, et al. A 5-day method for determination of soluble silicon concentrations in nonliquid fertilizer materials using a sodium carbonate -ammonium nitrate extractant followed by visible spectroscopy with heteropoly blue analysis:single-laboratory validation[J]. Journal of aoac international, 2013, 96(2):251-259. doi: 10.5740/jaoacint.12-243

  • 加载中

(3)

计量
  • 文章访问数:  1725
  • PDF下载数:  203
  • 施引文献:  0
出版历程
收稿日期:  2018-07-17
刊出日期:  2019-02-25

目录