OSG BASED REAL TIME MONITORING METHOD FOR MCSEM SYSTEM
-
摘要:
三维实时MCSEM监测系统强调的是监测的实时性,以三维可视化方式实时显示施工过程,有利于直观地监测和判断工作过程是否存在异常。根据MCSEM作业方式与流程,研究了在OSG三维渲染引擎的开发环境下,三维场景实时动态更新方法,包括三维模型实时更新、海底地形、轨迹线等要素绘制和相机实时跟踪;研究了三维场景数据组织结构与渲染状态机制,优化场景渲染,提高场景的响应速率,尽量保证三维显示的实时性、流畅性;开发了三维实时MCSEM监测系统进行实例验证,经过大量数据多次测试,系统运行稳定、响应及时,三维显示效果良好,较好地满足了实时监测的要求。
Abstract:The main advantage of a 3D real-time MCSEM monitoring system is its characteristics of real-time. Displaying the construction process with 3D visualization methods in real-time contributes to avoiding abnormities through monitoring and analyzing the work process. This paper develops a real-time dynamic update method to deal with 3D scenes. The method bases on the practices and procedures of MCSEM, and is implemented with the OSG 3D rendering engine, including the real-time updates of 3D models, the plotting of topographic features like the seabed topography and trace, and the real-time tracking of cameras. In addition, this paper contributes to the scene rendering optimization by studying the data structure and rendering mechanism of 3D scenes. The scene rendering optimization mainly results in the improvement of responding rate and the real-time and fluency of 3D display. Furthermore, an advanced 3D real-time monitoring system is implemented and further verified to meet the requirements of real-time monitoring.
-
Key words:
- OSG /
- real-time 3D monitoring /
- MCSEM /
- the scene rendering optimization
-
-
表 1 海洋CSEM监测系统通信协议
Table 1. MCSEM monitoring system communication protocol
示例 33#2015/7/31/12:10:30#655.5#13.
3#15.5#400#0.01#17.5#441#23
#24#26#455.6#665#23#34.6#
1450#11100.78#23580.45#389.89#
100#3.4#25#RUN#STOP#2#
1KHz#3……#CHE##END#2015/7/31/12:10:30 记录时间 655.5 发射机输出电流/A 13.3 发射机输出电压/V 15.5 发射机输入电流/A 400 发射机输入电压/V 0.01 发射机输出电流频率/Hz 17.5 甲板电源输出电流/A 411 甲板电源输出电压/V 23 发射机变压器温度/℃ 24 发射机IGBT温度/℃ 26 发射机舱内温度/℃ 455.6 发射机所在离底高度/m 665 发射机所在海水深度/m 23 海水温度/℃ 34.6 海水盐度 1 450 海水声速/(m/s) 11 100.78 发射机拖体A的X坐标() 23 580.45 发射机拖体A的Y坐标() 389.89 发射机拖体A的Z坐标() 100 绞车放缆长度/m 3.4 绞车放缆速度/(m/s) 25 绞车缆线张力/N RUN 绞车运行状态(RUN、STOP、SET、POWER) STOP 发射机运行状态(RUN、STOP、SET、POWER) 2 发射机故障事件(1,2,3) 1kHz 数据采集卡采样率(100Hz、1kHz、2kHz、5kHz) 3 发射波形代码(1,2,3…,255) … … … … … … CHE 校验位 #END# 数据包尾 -
[1] 胡小群,李 斌,黄 涛. 海洋可控源电磁勘探技术[J]. 海洋石油,2012,32(3):13-17. doi: 10.3969/j.issn.1008-2336.2012.03.013
[2] Avdeeva A D, Commer M, Newman G A.Hydrocarbon Reservoir Detectability Study for Marine CSEM Methods: Time-Domain versus Frequency-Domain[C].SEG International Exposition and 77th Annual Meeting, 2007.
[3] Weiss C.The fallacy of the "shallow-water problem" in marine CSEM exploration[J]. The Leading Edge, 2007, 72(6): A93-97. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=09556ae101d1bc35a3d1929e15f51dc6
[4] Nordiana M M, Saad R, Saidin M, et al.The 2-D Resistivity Study of Meteorite Impact Crater at Bukit Bunuh, Perak(Malaysia)[C]// Advances in Biomedical Engineering - 2012 Asia Pacific Conference on Environmental Science and Technology (APEST 2012), 2012.
[5] Lu X Y, Xia C S. Understand anisotropy in marine CSEM data[C]. 77th Annual International Meeting, 2007.
[6] 王 锐,钱学雷.OpenSceneGraph三维渲染引擎设计与实践[M].北京,清华大学出版社,2009.
[7] 杜俊贤. 基于 OSG 的虚拟场景中运动控制与交互技术研究 [D]. 武汉:武汉理工大学,2010.
[8] 赵敬红.基于 OpenSceneGraph 的大地形可视化方法研究 [D].长沙:中南大学,2009.
[9] 吕庆伦. 基于 OSG 的船舳驾驶系统视觉仿真研究 [D].镇江:江苏科技大学,2011.
[10] 李新放,刘海行,周 林.基于 OpenSceneGraph 的海洋环境三维可视化系统研究[J].海洋科学, 2012, 36(1): 54-58. doi: 10.3969/j.issn.1671-6647.2012.01.007
[11] 邓 明,王 猛,陈 凯, 等.海洋可控源电磁法原理及探测仪器[C]//2015年“海洋地质、矿山资源与环境”学术研讨会论文集.2015:199-199.
[12] 王 锐.最长的一帧[CP/OL].http://blog.csdn.net/pizi0475/article/details/5288598,2010.
[13] 刘伟宇.海洋可控源电磁甲板监测系统通信技术研究[D].长春:吉林大学,2014.
[14] 肖 鹏, 刘更代,徐明亮. OpenSceneGraph 三维渲染引擎编程指南[M]. 北京:清华大学出版社,2010.
-