GEOHAZARD RISK ASSESSMENT OF OREFIELDS IN VANADIUM ORE BELTS: A Case Study of Zhongcun Mining Area in Shanyang-Shangnan Vanadium Ore Belt, Shaanxi Province
-
摘要:
在查明地质灾害孕灾背景、发育现状、矿区开采现状的基础上,基于定性结合定量的评价方法,开展了矿区地质灾害危险性评价.基于评价结果和野外调查情况,总结采矿活动对矿区主要地质灾害的影响.主要成果如下:1)总结了研究区地质灾害的发育及分布特征;2)综合分析矿区孕灾环境及地质灾害致灾因子,构建了研究区危险性评价指标体系,以ArcGIS为工作平台,以斜坡单元为最小评价单元,进行了由地质灾害易发性到地质灾害危险性的评价;3)针对评价结果,理论分析了采矿活动对滑坡、崩塌、泥石流及塌陷等灾害发生的影响方式.
Abstract:On the basis of ascertaining the hazard-inducing environment, development situation of geological disasters and mining status, the geohazard risk assessment in mining areas is carried out with qualitative and quantitative methods. According to the assessment results and field survey, the influence of mining activities on main geohazards are summarized. The development and distribution characteristics of geohazards are studied. The disaster-causing environment and factors are analyzed comprehensively to construct the risk assessment index system. With ArcGIS as the working platform, the assessment from the susceptibility to risk is carried out with slope unit for minimum assessment unit. Based on the assessment results, the influence modes of mining activities on landslide, collapse, debris flow and subsidence are analyzed theoretically.
-
Key words:
- vanadium orefield /
- geohazard /
- hazard-inducing environment /
- ArcGIS /
- risk assessment /
- Shaanxi Province
-
-
表 1 危险性评价指标体系
Table 1. Risk assessment index system
目标层 准则层 因素层 指标层 地质灾害危险性评价 地质灾害易发性 地质环境因素 高程 坡度 坡型 斜坡结构 人类工程活动因素 工程地质岩组 距断裂距离 距水系距离 致灾因子危险性 过去灾害强度因素 地质灾害活动密度 未来灾害诱发因素 降雨 人类活动 采矿活动 表 2 信息量计算值表
Table 2. Classification and distribution of factors in the study area
因子 因子分区类别 分区面积 灾点个数 区内灾点面积 Cf值 高程/m 699.3~900 0.5672 1 0.0141 0.060836 900~1100 3.6260 5 0.1534 0.458016 1100~1300 7.3598 11 0.1554 -0.099059 1300~1470 2.2568 0 0.0000 -1.000000 坡度/(°) 0~10 0.2920 0 0.0000 -1.000000 10~20 0.6918 3 0.0560 0.728175 20~30 1.7984 1 0.0040 -0.906893 30~40 4.2177 8 0.1997 0.518287 40~50 5.6517 3 0.0260 -0.806963 50~60 1.0693 2 0.0372 0.335744 > 60 0.0889 0 0.0000 -1.000000 坡型 凹形坡 6.2535 11 0.2177 0.336206 直线形坡 1.3986 2 0.0265 -0.193316 凸形坡 6.1577 4 0.0787 -0.459264 工程地质岩组 坚硬块状侵入岩组 0.0841 0 0.0000 -1.000000 板岩、泥质硅质岩较软岩组 5.7652 6 0.0878 -0.354091 灰岩、砂岩和白云岩坚硬岩组 7.9601 11 0.2351 0.213282 斜坡结构 顺向坡 2.3936 7 0.1355 0.601016 顺斜向坡 5.2129 1 0.0224 -0.819747 横向坡 0.9290 1 0.0365 0.414557 逆斜向坡 2.7401 3 0.0503 -0.218935 逆向坡 2.5355 5 0.0782 0.247662 距断裂距离/m 0~100 2.4218 11 0.2439 0.786205 100~200 4.4291 4 0.0535 -0.489327 200~400 2.8763 2 0.0255 -0.626405 > 400 4.0820 0 0.0000 -1.000000 距水系距离/m 0~100 3.9081 12 0.2586 0.662140 100~200 3.3732 4 0.0443 -0.444145 200~400 4.0061 1 0.0200 -0.790424 > 400 2.5228 0 0.0000 -1.000000 表 3 因子权重计算表
Table 3. Calculation results of weights of factors
因子 β S. E. Wald df Sig. Exp(B) 高程 2.056 3.016 0.465 1 0.495 7.819 坡度 0.087 0.945 0.008 1 0.927 1.091 坡型 1.996 2.155 0.858 1 0.354 7.361 工程地质岩组 0.773 2.564 0.091 1 0.763 2.166 斜坡结构 3.189 1.682 3.595 1 0.058 24.259 距断裂距离 2.399 1.131 4.498 1 0.034 11.013 距水系距离 2.478 1.410 3.087 1 0.079 11.914 常量 0.336 0.730 0.212 1 0.645 1.400 β为逻辑回归系数; S. E.为标准误差; Wald为卡方值; df为自由度; Sig.为显著性 表 4 易发性分区统计表
Table 4. Statistics of vulnerability zonation
易发性等级 低 中 高 易发性值域(自然断点分级法) 0~0.42 0.42~0.6 0.6~1 斜坡数量及比例 129(39.1%) 136(41.2%) 65(19.7%) 面积/km2及比例 5(36.2%) 5.71(41.3%) 3.1(22.5%) 表 5 危险性分区统计表
Table 5. Statistics of risk zonation
危险性等级 低 中 高 危险性值域(自然断点分级法) 0~0.14 0.14~0.35 0.35~1 斜坡数量及比例 206(62.4%) 94(28.5%) 30(9.1%) 面积/km2及比例 7.36(53.3%) 4.16(30.2%) 2.29(16.5%) -
[1] 李伟.松宜煤矿区采矿活动对地质灾害的影响分析[J].科技视界, 2016, 6(25):356, 360. doi: 10.3969/j.issn.2095-2457.2016.25.279
[2] 杨学亮, 殷文静.地下采矿对矿山地质环境的影响探究[J].中国金属通报, 2018, 26(1):149. doi: 10.3969/j.issn.1672-1667.2018.01.092
[3] 雒卫.地下采矿对矿山地质环境影响[J].科技传播, 2012, 4(7):19, 29. http://d.old.wanfangdata.com.cn/Periodical/csjsllyj2015251456
[4] 何兴江.地下采矿与地质环境互馈机理及矿山地质环境治理研究[D].成都: 成都理工大学, 2008.
http://cdmd.cnki.com.cn/Article/CDMD-10616-2008086094.htm [5] Oh H J, Lee S. Assessment of ground subsidence using GIS and the weights-of-evidence model[J]. Engineering Geology, 2010, 115(1/2):36-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a343c7e5897b0cf13d6803dc4ea56ead
[6] Kim K D, Lee S, Oh H J, et al. Assessment of groundsubsidence hazard near an abandoned underground coal mine usingGIS[J]. Engineering Geology, 2006, 50(8):1183-1191. http://cn.bing.com/academic/profile?id=3ba29b076de7cda5079f87d5f273b852&encoded=0&v=paper_preview&mkt=zh-cn
[7] 黄道光.地质灾害危险性评价及重要性浅析[J].中国新技术新产品, 2010, 18(8):119. doi: 10.3969/j.issn.1673-9957.2010.08.116
[8] 张丽, 李广杰, 周志广, 等.基于灰色聚类的区域地质灾害危险性分区评价[J].自然灾害学报, 2009, 18(1):164-168. doi: 10.3969/j.issn.1004-4574.2009.01.025
[9] 石磊彬.基于确定性系数法的区域地质灾害评价[J].山西建筑, 2014, 40(1):67-69. http://d.old.wanfangdata.com.cn/Periodical/shanxjz201401037
[10] 杜谦, 范文, 李凯, 等.二元Logistic回归和信息量模型在地质灾害分区中的应用[J].灾害学, 2017, 32(2):220-226. doi: 10.3969/j.issn.1000-811X.2017.02.039
-