GEOCHEMICAL CHARACTERISTICS AND INFLUENCE FACTORS OF DESORBED GAS OF SHALE: A Case Study of JYA Well in Jiaoshiba area, Sichuan Basin
-
摘要:
通过对焦石坝地区JYA井五峰-龙马溪组页岩岩心样品进行现场解吸,计算页岩的总含气量,同时分时段采集解吸气样品进行气组分和稳定碳同位素测定.研究结果表明:1)研究区含气量较高,成分以甲烷为主,为典型干气,含气量主要受控于矿物组成、有机碳含量和含水饱和度等;2)页岩解吸气组分随着解吸时间呈规律性变化,CH4和C2H6含量逐渐升高,CO2含量先降低后升高,N2含量逐渐降低;3)解吸气中δ13C1和δ13C2会出现不同程度的分馏现象,主要受控于吸附-解吸过程;4)不同岩相页岩气解吸过程存在差异,在一阶解吸阶段,富泥硅质混合页岩样品的δ13C1由重变轻,而富硅质页岩样品由轻变重,这可能由于富泥硅质混合页岩无机孔占主导,孔径较大,游离气占总含气量比例较大.
Abstract:Through the desorption of shale core samples from Wufeng-Longmaxi Formation in JYA well of Jiaoshiba area, the total gas content in shale is calculated, and the desorbed gas samples are collected at different times for the determination of compositions and stable carbon isotopes. The results are shown as follows:1) The gas content in the study area is high, which is mainly controlled by mineral compositions, organic carbon content and water saturation, dominated by methane, a kind of typical dry gas. 2) The desorbed shale gas compositions change regularly with desorption time. The contents of CH4 and C2H6 increase gradually, CO2 content first decreases then increases, and N2 decreases gradually. 3) The δ13C1 and δ13C2 in the desorbed gas show different degrees of fractionation, mainly controlled by the "adsorption-desorption" process. 4) The desorption processes of shale gas with various lithofacies are different. At the first stage, the δ13C1 of mud-rich siliceous mixed shale samples changes from heavy to light, while that of the silicon-rich shale samples from light to heavy, which may be due to the inorganic pores that are dominated in the mud-rich siliceous mixed shale with large pore diameter and large proportion of free gas in the total gas content.
-
Key words:
- shale gas /
- desorbed gas /
- carbon isotope /
- lithofacies /
- Jiaoshiba area /
- Sichuan Basin
-
-
表 1 页岩含气量数据
Table 1. Content of desorbed shale gas
样品
编号小层 深度/
mTOC/
%含水饱和度/
%解吸气/
(m3/t)损失气/
(m3/t)总含气/
(m3/t)5 ⑤ 3107 2.66 46.4 1.11 1.71 2.81 4 ④ 3117 2.94 43.9 1.18 1.95 3.13 3 ③ 3126 3.52 40.7 1.56 2.6 4.17 2 ① 3139 4.8 24.8 2.09 5.05 7.15 1 ① 3144 4.55 20.8 2.01 4.49 6.5 -
[1] 张金川, 金之钧, 袁明生.页岩气成藏机理和分布[J].天然气工业, 2004, 24(7):15-18. http://d.old.wanfangdata.com.cn/Periodical/trqgy200407005
[2] 邹才能, 董大忠, 王社教, 等.中国页岩气形成机理、地质特征及资源潜力[J].石油勘探与开发, 2010, 37(6):641-653. http://d.old.wanfangdata.com.cn/Periodical/syktykf201006001
[3] 杨振恒, 魏志红, 何文斌, 等.川东南地区五峰组-龙马溪组页岩现场解吸气特征及其意义[J].天然气地球科学, 2017, 28(1):156-163. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201701017
[4] 高和群, 丁安徐, 陈云燕.页岩气解析规律及赋存方式探讨[J].高校地质学报, 2017, 23(2):285-295. http://d.old.wanfangdata.com.cn/Periodical/gxdzxb201702011
[5] 韩元红, 范明, 申宝剑, 等.富有机质页岩解吸气地球化学特征及其指示意义[J].天然气地球科学, 2017, 28(7):1065-1071. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201707009
[6] 许心怡, 岳长涛, 李术元, 等.四川志留系龙马溪组页岩等温解吸及甲烷碳同位素分馏特征[J].石油科学通报, 2018, 3(1):1-10. http://d.old.wanfangdata.com.cn/Periodical/sykxtb201801001
[7] 苟启洋, 徐尚, 郝芳, 等.纳米CT页岩孔隙结构表征方法——以JY-1井为例[J].石油学报, 2018, 39(11):1253-1261. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201811005
[8] 郭彤楼, 张汉荣.四川盆地焦石坝页岩气田形成与富集高产模式[J].石油勘探与开发, 2014, 41(1):28-36. http://d.old.wanfangdata.com.cn/Periodical/syktykf201401003
[9] GB/T 13610-2003[S], 天然气的组成分析气相色谱法.北京: 中国标准出版社, 2003.
[10] GB/T 18340.2-2010[S], 有机质稳定碳同位素测定同位素质谱法.北京: 中国标准出版社, 2010.
[11] 韩辉, 李大华, 马勇, 等.四川盆地东北地区下寒武统海相页岩气成因:来自气体组分和碳同位素组成的启示[J].石油学报, 2013, 34(3):453-459. http://d.old.wanfangdata.com.cn/Periodical/syxb201303005
[12] 苟启洋, 徐尚, 郝芳, 等.基于灰色关联的页岩储层含气性综合评价因子及应用——以四川盆地焦石坝区块为例[J].天然气地球科学, 2019, 30(7):1045-1052. doi: 10.11764/j.issn.1672-1926.2019.03.009
[13] 张文正, 杨华, 杨奕华, 等.鄂尔多斯盆地长7优质烃源岩的岩石学、元素地球化学特征及发育环境[J].地球化学, 2008, 37(1):59-64. http://d.old.wanfangdata.com.cn/Periodical/dqhx200801008
[14] 沈娟, 李小平, 安生婷, 等.四川盆地志留系龙马溪组页岩储集空间及矿物组成特征[J].地质与资源, 2017, 26(6):590-595. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8588.shtml
[15] Bertard C, Bruyet B, Gunther J. Determination of desorbable gas concentration of coal (direct method)[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1970, 7(1):43-65. http://cn.bing.com/academic/profile?id=87af64cde2f87499eb6b541585de5a5f&encoded=0&v=paper_preview&mkt=zh-cn
[16] Kissell F N, McCulloch C M, Elder C H. The direct method of determining methane content of coalbeds for ventilation design[R]. Washington: U.S. Burenu of Mines, 1973: 7767.
[17] Hu H Y. Methane adsorption comparison of different thermal maturity kerogens in shale gas system[J]. Chinese Journal of Geochemistry, 2014, 33(4):425-430. http://d.old.wanfangdata.com.cn/Periodical/zgdqhx-e201404014
[18] Ross D J K, Bustin R M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine and Petroleum Geology, 2009, 26(6):916-927. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a53766adffa2b49984d7b6f726a991d7
[19] Day S, Sakurovs R, Weir S. Supercritical gas sorption on moist coals[J]. International Journal of Coal Geology, 2008, 74(3/4):203-214. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-j.coal.2008.01.003/
[20] 张汉荣.川东南地区志留系页岩含气量特征及其影响因素[J].天然气工业, 2016, 36(8):36-42. http://d.old.wanfangdata.com.cn/Periodical/trqgy201608005
[21] 于文龙, 朱炎铭, 刘鹏, 等.陆相暗色泥页岩含气量及其影响因素探讨——以胶莱盆地水南组为例[J].科学技术与工程, 2018, 18(9):215-222. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxjsygc201809032
[22] 孙雷, 卞雄飞, 何大祥, 等.松辽盆地西南部金D1井九佛堂组烃源岩地球化学特征[J].地质与资源, 2018, 27(5):445-453. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8491.shtml
[23] 程璇, 徐尚, 郝芳, 等.松辽盆地嫩江组富有机质页岩有机孔隙成因[J].地质科技情报, 2019, 38(4):62-69. http://d.old.wanfangdata.com.cn/Periodical/dzkjqb201904008
[24] Gensterblum Y, Busch A, Krooss B M. Molecular concept and experimental evidence of competitive adsorption of H2O, CO2 and CH4 on organic material[J]. Fuel, 2014, 115:581-588. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4d3c2830d4b27406a626a1435df34939
[25] Joubert J I, Grein C T, Bienstock D. Sorption of methane in moist coal[J]. Fuel, 1973, 52(3):181-185. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-0016-2361(73)90076-8/
[26] Joubert J I, Grein C T, Bienstock D. Effect of moisture on the methane capacity of American coals[J]. Fuel, 1974, 53(3):186-191. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-0016-2361(74)90009-X/
[27] 张建博, 陶明信.煤层甲烷碳同位素在煤层气勘探中的地质意义——以沁水盆地为例[J].沉积学报, 2000, 18(4):611-614. http://d.old.wanfangdata.com.cn/Conference/207672
[28] Strąpoć D, Schimmelmann A, Mastalerz M. Carbon isotopic fractionation of CH4 and CO2 during canister desorption of coal[J]. Organic Geochemistry, 2006, 37(2):152-164. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=da3bd4fb7c034166b26a31c7d677a224
[29] 周成林, 唐友军, 刘彬.大兴安岭中南段下二叠统寿山沟组典型泥岩地球化学特征及其地质意义[J].地质与资源, 2019, 28(2):140-148. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8389.shtml
[30] 魏祥峰, 郭彤楼, 刘若冰.涪陵页岩气田焦石坝地区页岩气地球化学特征及成因[J].天然气地球科学, 2016, 27(3):539-548. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201603017
[31] 秦华, 范小军, 刘明, 等.焦石坝地区龙马溪组页岩解吸气地球化学特征及地质意义[J].石油学报, 2016, 37(7):846-854. http://d.old.wanfangdata.com.cn/Periodical/syxb201607003
[32] 孟强, 王晓锋, 王香增, 等.页岩气解析过程中烷烃碳同位素组成变化及其地质意义——以鄂尔多斯盆地伊陕斜坡东南部长7页岩为例[J].天然气地球科学, 2015, 26(2):333-340. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqdqkx201502014
[33] 李相方, 蒲云超, 孙长宇, 等.煤层气与页岩气吸附/解吸的理论再认识[J].石油学报, 2014, 35(6):1113-1129. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201406009
[34] 青加伟, 徐尚, 彭波, 等.鄂西地区陡山沱组页岩储层孔隙特征及影响因素[J].沉积与特提斯地质, 2019, 39(2):103-111. http://d.old.wanfangdata.com.cn/Periodical/yxgdl201902012
[35] 张庆玲, 张群, 崔永君, 等.煤对多组分气体吸附特征研究[J].天然气工业, 2005, 25(1):57-60. http://d.old.wanfangdata.com.cn/Periodical/trqgy200501017
-