Metamorphic deformation characters and forming process of ore bodies in the Hongtoushan massive sulfide deposit, Northeast China
-
摘要:
辽宁红透山块状硫化物矿床位于华北克拉通北缘,是中国最大的太古宙块状硫化物矿床。该矿床经历了高级角闪岩相变质变形和后期热液改造。通过野外和矿相学观察,将红透山矿床的主要矿石类型划分为4类。块状矿石呈层状和块状构造,等粒状和变晶结构;粗晶状矿石呈透镜状和块状构造,巨斑状和填隙结构;糜棱岩化矿石又称矿石糜棱岩,矿石呈透镜状和揉皱状构造,细粒化和重结晶结构;富铜矿石,或称"铜条",呈脉状和板条状,交代残留和乳滴结构,变形显著。通过对以上4类矿石矿物组合、共生关系和变形特征的分析,系统厘定了矿石的成因和形成过程。块状矿石的变形和流体活动不明显,是原生VMS矿石受区域变质重结晶的产物。粗晶状矿石变斑晶发育,黄铜矿和闪锌矿含量极低,代表强烈变质重结晶和再活化后的残余相。矿石糜棱岩韧性变形最强烈,黄铜矿和闪锌矿明显高于块状矿石,代表韧性变形和再活化的硫化物矿石。铜条韧性变形和交代结构发育,以黄铜矿为主,闪锌矿次之,同时含少量指示低温成因的硫铜钴矿,是机械再活化与变质热液再沉淀的产物。
Abstract:The Hongtoushan volcanic-hosted massive sulfide(VMS)deposit, located in the northern margin of North China craton, is the largest Archean VMS in China.The main orebodies and host rocks in the deposit have undergone metamorphism and deformation of high amphibolite facies and hydrothermal overprinting.Based on field and mineralogical observation, its main ore types are divided into following four types: a.massive sulfide ores, mainly stratiform and massive in shape, medium-sized, isogranular and crystalloblastic in textures; b.coarse-grained ores, generally lenticular and massive in shape, giant metacryst and interstitial in texture; c.mylonitized sulfide ores, also called ore mylonites, lenticular and crumpled in shape, fine-grained and recrystallized in textures; and d.copper-rich sulfide ores, also called as "copper bar", veined and laminated in shape, metasomatic residual and emulsion textures.Combined with mineral fabric and assemblage, field relationships, and deformation characteristics, the genesis and formation process of the above four types of ores are summarized.The massive sulfide ores are produced by regional metamorphism and recrystallization from primary VMS ores, while ductile deformation and hydrothermal overprinting are unobvious.The coarse-grained ores are dominated by nearly undeformed giant metacrysts with extremely low content of chalcopyrite and sphalerite, representing the residual phase during intensive metamorphic recrystallization and remobilization.Mylonite ores show strongest ductile deformation, with obviously higher contents of chalcopyrite, sphalerite and galena than massive ores, representing extensive ductile deformation and remobilization of massive sulfide ore.Deformation and overprinting structure are developed in copper bars in which sulfide in copper bars is dominated by chalcopyrite, followed by some sphalerite, minor carrollite, and depleted in pyrite or pyrrhotite, indicating mechanical reactivation and metamorphic hydrothermal precipitation under lower temperature.
-
-
表 1 铜条中硫铜钴矿电子探针成分分析结果
Table 1. EPMA data of carrollite enclosed in copper bar
% 点号 Zn Cu Fe Ni Co S 总量 1 0.09 13.13 0.06 5.02 38.74 41.21 98.25 2 - 13.69 0.12 4.91 39.48 41.51 99.70 3 0.10 13.39 0.15 5.12 38.93 41.23 98.91 4 - 13.70 0.11 5.07 39.00 41.63 99.52 5 - 13.13 0.04 4.96 38.95 41.53 98.60 6 - 13.29 0.15 5.08 38.90 41.59 99.01 7 0.01 13.33 0.10 5.00 38.86 41.76 99.05 平均值 0.07 13.38 0.10 5.02 38.98 41.49 99.01 注:-表示含量低于检测限;电流20 nA,加速电压15 kV,束流直径1 μm,元素峰和背景的计数时间分别为10 s和5 s,主要元素标样为:方钴矿(Co)、镍黄铁矿(Ni)、赤铜矿(Cu)、闪锌矿(Zn)、黄铁矿(S和Fe)、方铅矿(Pb)和银金矿(Au和Ag)。内生金属矿床成矿机制研究国家重点实验室(南京大学)JEOL JXA-8100 M型电子探针 -
[1] Vokes F M. A review of the metamorphism of sulphide deposits[J]. Earth-Science Reviews, 1969, 5(2): 99-143. doi: 10.1016/0012-8252(69)90080-4
[2] Vokes F M. Ores and metamorphism: introduction and historical perspectives[J]. Reviews in Economic Geology, 2000, 11: 1-18. http://www.researchgate.net/publication/290858455_Ores_and_metamorphism_Introduction_and_historical_perspectives
[3] McClay K R. Deformation of stratiform lead-zinc deposits[C]//Sangster D F. Sediment-Hosted stratiform Lead-Zinc Deposits, Short Course Handbook, Mineral Association of Canada, 1983, 8: 283-309.
[4] Vivallo W, Rickard D. Genesis of an Early Proterozoic zinc deposit in high-grade metamorphic terrane, Saxberget, Central Sweden[J]. Economic Geology, 1990, 85(4): 714-736. doi: 10.2113/gsecongeo.85.4.714
[5] Cook N J, Halls C, Boyle A P. Deformation and metamorphism of massive sulphides at Sulitjelma, Norway[J]. Mineralogical Magazine, 1993, 57(386): 67-81. doi: 10.1180/minmag.1993.057.386.07
[6] Lockington J A, Cook N J, Ciobanu C L. Trace and minor elements in sphalerite from metamorphosed sulphide deposits[J]. Mineralogy and Petrology, 2014, 108(6): 873-890. doi: 10.1007/s00710-014-0346-2
[7] Cook N J, Klemd R, Okrusch M. Sulphide mineralogy, metamorphism and deformation in the Matchless massive sulphide deposit, Namibia[J]. Mineralium Deposita, 1994, 29(1): 1-15. doi: 10.1007/BF03326392
[8] Gu L X, Zheng Y, Tang X, et al. Copper, gold and silver enrichment in ore mylonites within massive sulphide orebodies at Hongtoushan VHMS deposit, N.E. China[J]. Ore Geology Reviews, 2007, 30(1): 1-29. doi: 10.1016/j.oregeorev.2005.09.001
[9] Barrie C D, Boyle A P, Cook N J, et al. Pyrite deformation textures in the massive sulfide ore deposits of the Norwegian Caledonides[J]. Tectonophysics, 2010, 483(3/4): 269-286. http://www.sciencedirect.com/science/article/pii/S0040195109006064
[10] Marshall B, Vokes F M, Larocque A C L. Regional metamorphic remobilization: upgrading and formation of ore deposits[J]. Reviews in Economic Geology, 2000, 11(1): 19-38. http://www.researchgate.net/publication/258487778_Regional_metamorphic_remobilization_Upgrading_and_formation_of_ore_deposits
[11] Klinger L, Rabkin E. Beyond the Fisher model of grain boundary diffusion: effect of structural inhomogeneity in the bulk[J]. Acta Materialia, 1999, 47(3): 725-734. doi: 10.1016/S1359-6454(98)00420-0
[12] Reddy S M, Timms N E, Pantleon W, et al. Quantitative characterization of plastic deformation of zircon and geological implications[J]. Contributions to Mineralogy and Petrology, 2007, 153(6): 625-645. doi: 10.1007/s00410-006-0174-4
[13] Timms N E, Kinny P D, Reddy S M, et al. Relationship among titanium, rare earth elements, U-Pb ages and deformation microstructures in zircon: Implications for Ti-in-zircon thermometry[J]. Chemical Geology, 2011, 280(1/2): 33-46. http://www.sciencedirect.com/science/article/pii/S0009254110003566
[14] Vukmanovic Z, Reddy S M, Godel B, et al. Relationship between microstructures and grain-scale trace element distribution in komatiite-hosted magmatic sulphide ores[J]. Lithos, 2014, 184: 42-61. http://www.sciencedirect.com/science/article/pii/S0024493713003538
[15] Mavrogenes J A, MacIntosh I W, Ellis D J. Partial melting of the Broken Hill galena-sphalerite ore: Experimental studies in the system PbS-FeS-ZnS-(Ag2S)[J]. Economic Geology, 2001, 96(1): 205-210. doi: 10.2113/gsecongeo.96.1.205
[16] Frost B R, Mavrogenes J A, Tomkins A G. Partial melting of sulfide ore deposits during medium-and high-grade metamorphism[J]. The Canadian Mineralogist, 2002, 40(1): 1-18. doi: 10.2113/gscanmin.40.1.1
[17] Tomkins A G, Pattison D R M, Zaleski E. The Hemlo gold deposit, Ontario: An example of melting and mobilization of a precious metal-sulfosalt assemblage during amphibolite facies metamorphism and deformation[J]. Economic Geology, 2004, 99(6): 1063-1084. doi: 10.2113/gsecongeo.99.6.1063
[18] Bailie R H, Reid D L. Ore textures and possible sulphide partial melting at Broken Hill, Aggeneys, South Africa I: Petrography[J]. South African Journal of Geology, 2005, 108(1): 51-70. doi: 10.2113/108.1.51
[19] Sparks H A, Mavrogenes J A. Sulfide melt inclusions as evidence for the existence of a sulfide partial melt at Broken Hill, Australia[J]. Economic Geology, 2005, 100(4): 773-779. doi: 10.2113/gsecongeo.100.4.773
[20] Geisler T, Schaltegger U, Tomaschek F. Re-equilibration of zircon in aqueous fluids and melts[J]. Elements, 2007, 3(1): 43-50. doi: 10.2113/gselements.3.1.43
[21] Xia F, Brugger J, Chen G, et al. Mechanism and kinetics of pseudomorphic mineral replacement reactions: A case study of the replacement of pentlandite by violarite[J]. Geochimica et Cosmochimica Acta, 2009, 73(7): 1945-1969. doi: 10.1016/j.gca.2009.01.007
[22] Zhao J, Brugger J, Grundler P V, et al. Mechanism and kinetics of a mineral transformation under hydrothermal conditions: Calaverite to metallic gold[J]. American Mineralogist, 2009, 94(11/12): 1541-1555. http://www.degruyter.com/view/j/ammin.2009.94.issue-11-12/am.2009.3252/am.2009.3252.xml?format=INT
[23] Harlov D E, Wirth R, Hetherington C J. Fluid-mediated partial alteration in monazite: the role of coupled dissolution-reprecipitation in element redistribution and mass transfer[J]. Contributions to Mineralogy and Petrology, 2011, 162(2): 329-348. doi: 10.1007/s00410-010-0599-7
[24] 杨振升, 俞保祥. 辽宁北部红透山地区太古宙绿岩带的多期变形[J]. 吉林大学学报(地球科学版), 1984, 14(1): 20-35. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ198401001.htm
[25] 于凤金. 红透山式矿床成矿模式与找矿模型研究[D]. 东北大学博士学位论文, 2006.
[26] Zhang Y, Sun F, Li B, et al. Ore textures and remobilization mechanisms of the Hongtoushan copper-zinc deposit, Liaoning, China[J]. Ore Geology Reviews, 2014, 57: 78-86. doi: 10.1016/j.oregeorev.2013.09.006
[27] 赵印香, 崔文元. 辽宁清源地区太古代变质杂岩的矿物学和结晶温压条件[J]. 长春地质学院学报, 1987, 31(2): 191-204.
[28] 张秋生, 李守义, 刘连登. 中国早前寒纪地质及成矿作用[M]. 长春: 吉林人民出版社, 1984: 1-536.
[29] 刘连登, 朱永正, 戴仕炳. 金矿与韧性剪切带及叠加构造[C]//张贻侠, 刘连登. 中国前寒武纪矿床和构造. 北京: 地震出版社, 1994: 39-77.
[30] 赵胜金, 于海洋, 申亮, 等. 大兴安岭北段新巴尔虎右旗韧性剪切带的发现及其地质意义[J]. 地质通报, 2020, 39(4), 450-458. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20200404&flag=1
[31] 沈保丰. 辽北-吉南太古宙地质及成矿[M]. 北京: 地质出版社, 1994: 1-255.
[32] Zhu M T, Zhang L C, Dai Y P, et al. In situ zircon U-Pb dating and O isotopes of the Neoarchean Hongtoushan VMS Cu-Zn deposit in the North China Craton: Implication for the ore genesis[J]. Ore Geology Reviews, 2015, 67: 354-367. doi: 10.1016/j.oregeorev.2014.12.019
[33] 王荃. 华北克拉通与全球构造[J]. 地质通报, 2011, 30(1): 1-18. doi: 10.3969/j.issn.1671-2552.2011.01.001 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20110101&flag=1
[34] Ren J. The continental tectonics of China[J]. Journal of Southeast Asian Earth Sciences, 1996, 13(3-5): 197-204. doi: 10.1016/0743-9547(96)00026-8
[35] Zhai M, Liu W. Palaeoproterozoic tectonic history of the North China craton: a review[J]. Precambrian Research, 2003, 122(1/4): 183-199. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ200312004003.htm
[36] Song B, Nutman A P, Liu D, et al. 3800 to 2500 Ma crustal evolution in the Anshan area of Liaoning Province, northeastern China[J]. Precambrian Research, 1996, 78(1/3): 79-94. http://www.sciencedirect.com/science/article/pii/0301926895000704
[37] Zhang Z M, Liou J G, Coleman R G. An outline of the plate tectonics of China[J]. Geological Society of America Bulletin, 1984, 95(3): 295-312. doi: 10.1130/0016-7606(1984)95<295:AOOTPT>2.0.CO;2
[38] Chen Y J, Guo G, Li X. Metallogenic geodynamic background of Mesozoic gold deposits in granite-greenstone terrains of North China Craton[J]. Science in China Series D: Earth Sciences, 1998, 41(2): 113-120. http://www.zhangqiaokeyan.com/academic-journal-cn_chinese-science_thesis/0201227489863.html
[39] Chen Y J. Fluidization model for continental collision in special reference to study on ore-forming fluid of gold deposits in the eastern Qinling Mountains, China[J]. Progress in Natural Science, 1998, 8(4): 385. http://www.cnki.com.cn/Article/CJFDTotal-ZKJY199804000.htm
[40] Zhai M G, Liu W J. The formation and contribution of granulites to the evolution of the continental crust[J]. Acta Petrologica Sinica, 2001, 17(1): 28-37. http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-sinica_thesis/0201252035094.html
[41] 翟明国, 杨瑞英, 卢文江, 等. 清原太古代花岗岩-绿岩地体的常量和微量元素地球化学证据[J]. 地质论评, 1984, 30(6): 523-535. doi: 10.3321/j.issn:0371-5736.1984.06.003
[42] 毛德宝, 沈保丰, 李俊建, 等. 辽北清原地区太古宙地质演化及其对成矿的控制作用[J]. 前寒武纪研究进展, 1997, 22(3): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ199703000.htm
[43] Tong X, Wang C, Peng Z, et al. Geochemistry of meta-sedimentary rocks associated with the Neoarchean Dagushan BIF in the Anshan-Benxi area, North China Craton: Implications for their provenance and tectonic setting[J]. Precambrian Research, 2019, 325: 172-191. doi: 10.1016/j.precamres.2019.02.022
[44] Groves D I, Goldfarb R J, Gebre-Mariam M, et al. Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types[J]. Ore geology reviews, 1998, 13(1/5): 7-27. http://www.sciencedirect.com/science/article/pii/S0169136897000127
[45] 戴仕炳, 刘连登. 浑北太古宙南龙王庙金矿床的成矿物质来源[J]. 国土资源, 1989, 21(3): 216-229. https://www.cnki.com.cn/Article/CJFDTOTAL-LOAD198903002.htm
[46] 郑远川, 顾连兴, 汤晓茜, 等. 天然矿石中硫化物的同构造再活化实验研究[J]. 地质学报, 2008, 83(1): 31-42. doi: 10.3321/j.issn:0001-5717.2008.01.004
[47] 张雅静, 孙丰月, 霍亮, 等. 辽宁树基沟铜锌矿成矿时代及矿石再活化机制[J]. 吉林大学学报(地球科学版), 2014, 44(3): 786-795. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201403007.htm
[48] Barton J P B. Some ore textures involving sphalerite from the Furutobe mine, Akita Prefecture, Japan[J]. Mining Geology, 1978, 28(150): 293-300. http://www.jstage.jst.go.jp/article/shigenchishitsu1951/28/150/28_150_293/_article/
[49] 顾连兴, 郑远川, 汤晓茜, 等. 硫化物矿石若干结构及相关成矿理论研究进展[J]. 自然科学进展, 2006, 16(2): 149-156. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200602004.htm
[50] Hietanen A. On the facies series in various types of metamorphism[J]. The Journal of Geology, 1967, 75(2): 187-214. doi: 10.1086/627246
[51] Richardson S W, Gilbert M C, Bell P M. Experimental determination of kyanite-andalusite and andalusite-sillimanite equilibria; the aluminum silicate triple point[J]. American Journal of Science, 1969, 267(3): 259-272. doi: 10.2475/ajs.267.3.259
[52] Holdaway M J. Stability of andalusite and the aluminum silicate phase diagram[J]. American journal ofScience, 1971, 271(2): 97-131. http://adsabs.harvard.edu/abs/1971AmJS..271...97H
[53] Craig J R, Vokes F M. The metamorphism of pyrite and pyritic ores: an overview[J]. Mineralogical Magazine, 1993, 57(386): 3-18. doi: 10.1180/minmag.1993.057.386.02
[54] Marshall B, Gilligan L B. Remobilization, syn-tectonic processes and massive sulphide deposits[J]. Ore Geology Reviews, 1993, 8(1/2): 39-64. http://www.sciencedirect.com/science/article/pii/016913689390027V
[55] Cook N J. Mineralogy of the sulphide deposits at Sulitjelma, northern Norway[J]. Ore Geology Reviews, 1996, 11(5): 303-338. doi: 10.1016/S0169-1368(96)00009-1
[56] Spry A. Metamorphic Textures[M]. Pergamon Press, Oxford. 1979: 1-350.
[57] Gu L X, Vokes F M. Intergrowths of hexagonal and monoclinic pyrrhotites in some sulphide ores from Norway[J]. Mineralogical Magazine, 1996, 60(2): 303-316. http://www.degruyter.com/view/j/minmag.1996.60.issue-2/minmag.1996.060.399.05/minmag.1996.060.399.05.xml?format=INT
[58] Marshall B, Gilligan L B. An introduction to remobilization: information from ore-body geometry and experimental considerations[J]. Ore Geology Reviews, 1987, 2(1/3): 87-131. http://www.sciencedirect.com/science/article/pii/0169136887900254
[59] Finch E G, Tomkins A G. Pyrite-pyrrhotite stability in a metamorphic aureole: implications for orogenic gold genesis[J]. Economic Geology, 2017, 112(3): 661-674. doi: 10.2113/econgeo.112.3.661
[60] 郑远川, 顾连兴, 汤晓茜, 等. 天然矿石中硫化物的同构造再活化实验研究[J]. 地质学报, 2009, 83(1): 31-42. doi: 10.3321/j.issn:0001-5717.2009.01.004
[61] 顾连兴, 汤晓茜, 郑远川, 等. 辽宁红透山铜锌块状硫化物矿床的变质变形和成矿组分再活化[J]. 岩石学报, 2004, 20(4): 923-934. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200404014.htm
[62] Cox S F, Etheridge M A, Hobbs B E. The experimental ductile deformation of polycrystalline and single crystal pyrite[J]. Economic Geology, 1981, 76(8): 2105-2117. doi: 10.2113/gsecongeo.76.8.2105
[63] Clark B R, Kelly W C. Sulfide deformation studies; I, experimental deformation of pyrrhotite and sphalerite to 2, 000 bars and 500 degrees C[J]. Economic Geology, 1973, 68(3): 332-352. doi: 10.2113/gsecongeo.68.3.332
[64] Simpson C. Deformation of granitic rocks across the brittle-ductile transition[J]. Journal of Structural Geology, 1985, 7(5): 503-511. doi: 10.1016/0191-8141(85)90023-9
[65] Cox S F. Flow mechanisms in sulphide minerals[J]. Ore Geology Reviews, 1987, 2(1/3): 133-171. http://www.sciencedirect.com/science/article/pii/0169136887900266
[66] Shu L S Sun Y. Simulating experiments for the deformation and microstructures of granite in the central part of the Jiangnan Belt, South China[J]. Science in China, 1996, 39(1): 82-92. http://www.cnki.com.cn/Article/CJFDTotal-JDXG199601009.htm
[67] Belkabir A, Hubert C, Hoy L. Fluid-rock reactions and resulting change in rheological behavior of a composite granitoid: the Archean Mooshla stock, Canada[J]. Canadian Journal of Earth Sciences, 1998, 35(2): 131-146. doi: 10.1139/e97-091
[68] Vokes F M, Craig J R. Post-recrystallisation mobilisation phenomena in metamorphosed stratabound sulphide ores[J]. Mineralogical Magazine, 1993, 7(386): 19-28. http://www.researchgate.net/publication/249849956_Post-Recrystallisation_Mobilisation_Phenomena_in_Metamorphosed_Stratabound_Sulphide_Ores
[69] Barton P B, Bethke P M. Chalcopyrite disease in sphalerite; pathology and epidemiology[J]. American Mineralogist, 1987, 72(5-6): 451-467. http://ci.nii.ac.jp/naid/80003487850
[70] 臧启家. 新疆某紫硫镍矿与河北某硫铜钴矿的成因[J]. 矿物学报, 1984, 38(1): 76-79. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB198401014.htm
[71] Oliver N H S. Review and classification of structural controls on fluid flow during regional metamorphism[J]. Journal of Metamorphic Geology, 1996, 14(4): 477-492. doi: 10.1046/j.1525-1314.1996.00347.x
[72] Fein J B, Hemley J J, d'Angelo W M, et al. Experimental study of iron-chloride complexing inhydrothermal fluids[J]. Geochimica et Cosmochimica Acta, 1992, 56(8): 3179-3190. doi: 10.1016/0016-7037(92)90296-U
[73] Xiao Z, Gammons C H, Williams-Jones A E. Experimental study of copper(I)chloride complexing in hydrothermal solutions at 40 to 300 C and saturated water vapor pressure[J]. Geochimica et Cosmochimica Acta, 1998, 62(17): 2949-2964. doi: 10.1016/S0016-7037(98)00228-2
[74] Hemley J J, Cygan G L, d'Angelo W M. Effect of pressure on ore mineral solubilities under hydrothermal conditions[J]. Geology, 1986, 14(5): 377-379. doi: 10.1130/0091-7613(1986)14<377:EOPOOM>2.0.CO;2
[75] Cygan G L, Hemley J J, d'Angelo W M. An experimental study of zinc chloride speciation from 300 to 600 C and 0.5 to 2.0 kbar in buffered hydrothermal solutions[J]. Geochimica et Cosmochimica Acta, 1994, 58(22): 4841-4855. doi: 10.1016/0016-7037(94)90215-1
[76] Seward T M. Metal transport by hydrothermal ore fluids[J]. Geochemistry of hydrothermal ore deposits, 1997, 15: 435-486. http://ci.nii.ac.jp/naid/10008463258
[77] Hezarkhani A, Williams-Jones A E, Gammons C H. Factors controlling copper solubility and chalcopyrite deposition in the Sungun porphyry copper deposit, Iran[J]. Mineralium deposita, 1999, 34(8): 770-783. doi: 10.1007/s001260050237
[78] 顾连兴, 郑远川, 汤晓茜, 等. 无外加流体、350℃和差异应力条件下硫化物再活化实验研究[J]. 中国地质, 2008, 35(6): 1054-1058. doi: 10.3969/j.issn.1000-3657.2008.06.003
[79] Zhong R, Brugger J, Chen Y, et al. Contrasting regimes of Cu, Zn and Pb transport in ore-forming hydrothermal fluids[J]. Chemical Geology, 2015, 395: 154-164. doi: 10.1016/j.chemgeo.2014.12.008
-