Hydrothermal alteration associated with Mesozoic Linglong-type granite-hosting gold mineralization at the Haiyu gold deposit, Jiaodong gold province
-
摘要:
三山岛北海域金矿床位于胶东金矿省的西北缘,是2015年新发现的超大型金矿床(储量470 t、Au品位4.30 g/t),金矿体赋存于中生代玲珑式花岗岩中,主矿体受三山岛-仓上断裂带控制。中生代含矿的玲珑式花岗岩显示了复杂的蚀变、矿化共生组合关系。三山岛-仓上断裂的活动使热液流体发生渗透,导致断裂带两侧发生广泛的钾化蚀变。随后,大规模的绢云母化沿主断裂两侧形成。随着断层泥的形成,其作为"阻挡层"使含矿流体不能运移到断裂带上盘,成矿流体在下盘发生强烈的绢云母-石英-黄铁矿蚀变并伴有金的析出。最后石英-碳酸盐脉的形成标志着与金成矿相关热液活动减弱。钾化和绢英岩化岩石的平衡计算揭示了SiO2、MgO和CaO带入,TiO2、K2O基本不变,而Na2O表现为带出;大多数主量元素受强烈的矿物反应影响。Au、Ag、Bi、As、Pb、Zn等相关成矿元素呈带入特征,它们之间多呈正相关关系且与黄铁绢英岩化有密切关系,显示出在水岩反应过程中不同类型的元素具有复杂的地球化学行为。蚀变组合和流体包裹体研究表明,成矿流体以中低温(126~351℃)、中低盐度(1.02%~10.48% NaCleqv)为特征,属于CO2-H2O-NaCl±CH4体系。在热液流体中,金可能主要以Au(HS)2-络合物的形式运移;黄铁绢英岩化过程中,硫化作用使Au(HS)2-络合物失稳分解导致Au沉淀富集成矿。华北克拉通的重新活化导致软流圈上涌和大量火成岩的形成,也为胶东发生大规模金成矿作用提供了充足的的热能和流体输入。
-
关键词:
- 热液蚀变 /
- 质量变化 /
- 成矿流体 /
- 三山岛北部海域金矿床 /
- 胶东
Abstract:The Haiyu gold deposit, located in the north part of the Jiaodong gold province, was discovered in 2015 as a superlarge gold deposit with gold reserves 470 t @ 4.30 g/t. The gold orebodies were hosted in the Mesozoic Linglong-type granites and controlled by the Sanshandao-Cangshang Fault (SCF). Host Longlong-type granitic rocks for Au mineralization show a complex paragenetic sequence with hydrothermal alteration. Remobilization of the SCF system allowed for infiltration of hydrothermal fluids, leading to extensive K-feldspar alteration along the main fault. Subsequently, massive sericite formation occurred along both sides of the main fault. With the formation of fault gouge, the ore-bearing fluid could not migrate to the upper wall of the fault zone; therefore, the ore-forming fluid underwent intense sericite-quartz-pyrite alteration in footwall accompanied by gold precipitation. Finally, the formation of quartz-carbonate veins indicated the decrease of hydrothermal activity related to gold mineralization. The equilibrium calculation of potash and sericite rocks revealed that SiO2, MgO and CaO were brought in, TiO2 and K2O were basically unchanged, while Na2O appeared to be taken out. Most major elements were affected by strong mineral reactions. Au, Ag, Bi, As, Pb, Zn and other related ore-forming elements showed a positive correlation and were closely related to sericite-quartz-pyrite alteration. The mass balance calculation shows that different types of elements had complex geochemical behaviors in the process of water-rock reaction. The alteration combination and fluid inclusion study shows that the ore-forming fluid was characterized by medium and low temperature (126~351℃) and medium and low salinity (1.02~10.48%NaCleqv), belonging to the CO2-H2O-NaCl±CH4 system. In hydrothermal fluids, gold might have migrated mainly as Au(HS)2- complex. During the process of sericite-quartz-pyrite alteration, Au(HS)2- complex was destabilized and decomposed by sulfofication, leading to Au precipitation and mineralization. The reactivation of the North China Craton led to the upwelling of asthenosphere and the formation of a large number of igneous rocks, and also provided sufficient thermal energy and fluid input for large-scale gold mineralization in Jiaodong gold province.
-
-
图 2 三山岛-仓上断裂带区域地质简图(a)和三山岛北海域金矿床地质简图(b)[18]
Figure 2.
图 3 三山岛北海域金矿床30线剖面地质图[6]
Figure 3.
表 1 三山岛北海域金矿床不同蚀变岩主量元素、微量和稀土元素分析结果
Table 1. The analyses of major, trace and REE Qnalyses of different altered rocks of the Haiyu gold deposit
样品号 深度/m SiO2 Al2O3 TFe2O3 MgO CaO Na2O K2O S Au Ag As Ba Bi Cd Cr Cu Ga Ge Mo Pb Sb Sr Ti W Zn Zr 二长花岗岩 ZK3004-1 448 65.94 13.78 0.06 0.74 0.11 1.34 3.41 4.51 438 2.79 137 4.32 827 0.09 113 6.67 4.33 20.3 1.22 0.55 35.2 0.19 220 0.74 45.2 44.9 ZK3008-1 583 64.87 14.73 0.12 1.35 0.16 1.42 4.46 3.97 87.4 3.04 79.0 0.79 1729 0.04 74.4 6.56 4.61 20.6 1.10 0.60 29.6 0.23 571 0.48 68.9 68.8 ZK4612-1 785 65.73 14.40 0.11 0.82 0.11 1.31 4.08 4.21 93.5 3.72 118 0.93 1275 0.04 32.4 6.94 1.37 20.2 1.18 0.34 37.3 0.12 386 0.21 38.1 49.4 ZK5405-2 1428 66.54 14.10 0.13 0.77 0.24 1.61 4.67 3.57 87.5 3.48 54.0 0.72 1245 0.09 31.9 11.6 3.64 18.9 0.93 2.04 22.3 0.15 644 0.29 19.0 64.9 ZK6205-1 515 66.52 14.82 0.11 1.14 0.14 1.47 4.08 3.61 77.6 0.79 50.2 0.64 1450 0.05 50.1 7.83 2.97 18.7 0.90 0.46 27.4 0.17 417 0.30 52.6 62.7 ZK6205-4 1299 64.94 14.01 0.16 1.41 0.25 1.64 3.98 3.76 116 0.49 23.8 0.50 861 0.05 27.8 6.58 2.12 21.8 1.08 0.47 22.7 0.32 449 0.43 27.0 81.7 平均值 65.76 14.30 0.12 1.04 0.17 1.46 4.11 3.94 150 2.38 77.1 1.32 1231 0.06 54.93 7.69 3.17 20.1 1.07 0.74 29.1 0.20 448 0.41 41.8 62.1 钾化花岗岩 ZK3001-7 300 64.70 15.75 0.11 0.78 0.20 1.96 4.13 4.00 50.4 3.03 68.5 1.50 1530 0.06 174 8.05 2.81 19.6 0.80 0.31 33.1 0.32 425 0.43 66.4 76.5 ZK3011-6 529 64.97 13.58 0.21 0.77 0.31 1.58 5.13 2.53 66.1 3.42 52.3 1.05 1087 0.03 14.4 7.32 3.08 20.6 0.61 0.23 18.4 0.24 748 0.26 34.1 89.5 ZK3003-8 1203 64.57 14.26 0.13 0.65 0.19 1.77 4.68 3.19 17.1 0.46 25.4 0.72 1817 0.03 18.2 11.2 3.00 17.8 0.66 1.44 19.6 0.15 683 0.42 14.9 54.5 平均值 64.75 14.53 0.15 0.73 0.23 1.77 4.64 3.24 44.5 2.30 48.8 1.09 1478 0.04 68.86 8.87 2.96 19.33 0.69 0.66 23.7 0.24 619 0.37 38.5 73.5 绢英岩化花岗岩 ZK3001-1 86.8 64.52 15.12 0.09 0.92 0.20 1.12 2.96 5.21 728 12.9 983 24.1 1288 0.27 909 7.04 20.2 22.3 1.20 0.42 294 0.79 200 0.88 142 60.5 ZK3001-5 237 60.28 14.40 0.11 0.83 0.25 1.80 0.15 4.62 128 4.76 198 3.81 926 0.07 687 8.15 4.34 18.5 1.13 0.29 92.8 0.75 202 0.63 259 80.5 ZK3001-6 276 60.36 14.10 0.12 1.15 0.37 6.14 1.05 3.95 51.3 0.46 50.2 0.95 674 0.05 189 6.36 1.97 20.0 1.04 0.24 15.2 0.38 403 1.23 67.2 64.2 ZK3011-2 307 65.43 14.55 0.05 0.79 0.18 0.73 2.00 4.58 493 9.55 375 13.1 410 0.05 939 7.20 13.5 25.2 1.41 0.43 153 0.71 150 0.55 212 39.1 ZK3011-3 339 62.48 13.81 0.11 1.30 0.27 1.96 0.59 4.37 564 15.5 1069 273 788 0.13 7791 10.2 21.5 18.6 1.29 0.48 701 1.30 191 1.34 1739 84.8 ZK3011-4 369 61.34 14.29 0.11 1.89 0.32 1.85 1.10 4.43 1871 21.3 1273 45.4 1136 0.20 3806 6.92 62.6 18.7 1.20 0.39 1055 0.86 257 1.94 916 91.7 ZK3003-2 576 66.85 12.73 0.11 0.68 0.20 1.51 3.57 3.61 117 0.92 86.4 3.11 1285 0.06 62.4 6.93 4.42 21.5 0.83 0.92 39.3 0.58 311 0.83 44.3 62.5 ZK3003-3 764 68.99 12.63 0.10 0.80 0.17 1.14 3.28 3.89 359 9.87 735 5.01 1301 0.52 83.1 9.13 4.67 18.3 1.14 1.27 56.6 0.28 286 0.55 24.1 67.9 绢英岩化花岗岩 ZK3003-5 945 60.70 14.40 0.09 5.00 0.50 1.00 0.07 3.98 4321 25.4 962 54.9 324 0.36 168 12.4 84.2 24.9 1.49 1.69 149 1.28 61.6 2.84 49.0 70.8 ZK3003-6 997 61.14 14.34 0.11 1.27 0.48 3.26 0.07 4.36 192 5.12 135 1.83 340 0.12 51.4 9.14 3.91 22.9 1.38 0.33 6.76 0.27 176 1.98 14.6 75.2 ZK3003-7 1094 64.32 13.45 0.15 0.59 0.21 1.68 4.75 3.30 44.9 1.52 23.6 0.87 2085 0.02 18.9 5.34 1.99 19.7 0.72 0.22 12.2 0.15 759 0.44 11.8 70.2 ZK3004-2 499 67.43 14.13 0.02 0.43 0.01 0.85 3.97 4.63 151 1.61 91.7 5.89 81.5 0.04 357 7.18 2.58 30.4 1.81 1.63 55.5 0.18 72.6 0.28 100 25.5 ZK3004-3 695 66.76 13.62 0.11 0.90 0.10 1.37 3.90 4.33 233 3.21 117 6.56 1283 0.03 409 4.52 4.56 19.4 1.00 0.35 41.2 0.20 376 0.38 98.6 63.8 ZK3004-5 1039 65.80 14.40 0.11 0.88 0.37 1.19 3.16 4.28 166 3.41 86.9 1.43 1721 0.04 187 5.49 2.96 17.7 1.02 0.42 28.2 0.26 442 1.43 62.6 67.5 ZK3004-8 1277 59.98 15.34 0.12 0.47 0.19 2.84 2.42 4.80 82.0 2.20 102 1.29 1673 0.21 35.3 4.44 1.29 19.1 1.11 1.52 37.9 0.17 358 2.88 17.3 72.8 ZK3004-9 1327 64.54 13.77 0.11 0.26 0.14 1.93 3.88 4.36 177 1.26 30.1 0.97 2790 0.06 18.7 6.74 3.13 18.0 0.95 1.52 19.1 0.11 774 3.90 10.4 52.7 ZK3006-2 614 69.52 13.51 0.03 0.34 0.00 0.54 4.43 4.01 58.0 0.40 55.2 1.75 47.2 0.06 59.3 11.2 3.73 31.0 1.93 1.72 36.3 0.13 64.0 0.50 33.9 18.6 ZK3006-3 1086 65.20 13.64 0.12 1.03 0.15 1.74 3.22 3.96 153 1.15 1047 2.26 1475 0.17 1022 10.5 29.7 17.7 0.97 1.52 282 1.81 443 0.62 291 72.3 ZK3006-7 1430 64.95 13.15 0.12 0.40 0.20 1.61 4.31 4.06 152 219 109 1.64 1550 0.32 59.5 11.8 7.91 15.8 0.91 2.47 17.7 13.8 386 3.08 15.6 63.8 ZK3006-8 1481 64.64 13.09 0.17 0.48 0.32 2.06 4.57 3.52 67.8 3.24 61.4 0.71 1423 0.32 29.0 5.43 2.50 19.3 0.93 0.52 9.43 0.22 447 2.98 11.9 92.4 ZK3008-2 714 67.86 14.21 0.05 0.55 0.03 0.75 4.53 4.26 59.8 0.61 54.1 1.83 305 0.04 41.3 10.3 2.63 24.0 1.49 0.50 37.8 0.18 161 0.39 29.3 36.9 ZK3008-6 1599 63.07 14.23 0.14 0.89 0.24 2.26 3.00 4.38 159 11.9 52.7 1.58 2107 0.09 85.8 12.0 5.30 19.6 0.96 0.41 18.9 0.20 465 2.61 33.2 88.5 ZK3008-7 1605 63.29 15.25 0.17 0.94 0.26 2.18 3.82 4.30 190 8.93 170 2.52 2502 0.27 395 14.6 9.26 20.9 0.80 1.58 47.4 0.15 684 1.37 143 93.7 ZK4612-2 1168 59.83 12.99 0.31 2.89 1.97 4.37 2.82 3.79 731 2.96 199 3.55 1513 0.15 126 91.6 9.73 19.8 1.07 2.91 41.7 1.44 912 3.45 67.4 66.9 ZK4612-3 1203 60.13 14.81 0.20 1.91 0.53 2.58 2.03 4.66 188 1.47 529 1.55 1162 0.07 1450 17.0 6.93 18.1 1.00 1.13 215 2.16 525 1.06 404 83.0 ZK4612-4 1226 65.72 14.44 0.12 0.80 0.13 1.61 4.32 3.98 98.5 1.06 52.4 2.38 1615 0.06 125 11.0 4.11 17.3 0.95 1.53 30.9 0.20 461 0.63 39.0 68.8 ZK5405-1 816 64.12 14.50 0.10 0.81 0.24 1.33 4.03 4.07 155 0.99 40.7 1.22 1618 0.04 53.8 7.90 3.17 19.7 1.14 0.60 21.8 0.25 361 0.35 24.5 59.9 ZK6205-2 976 65.50 12.45 0.09 0.77 0.13 1.42 3.51 4.58 107 0.42 35.5 0.72 1038 0.03 53.5 7.70 3.01 18.8 1.11 0.51 24.0 0.14 311 1.87 29.4 59.1 ZK6205-3 1084 65.37 13.86 0.13 0.99 0.20 2.88 3.20 3.62 76.9 2.15 57.2 0.79 995 0.04 67.2 7.43 2.94 17.8 0.91 0.55 12.6 0.28 324 1.48 17.6 81.4 ZK7603-1 1603 64.53 12.97 0.17 2.04 1.08 2.04 4.04 3.82 147 1.30 34.6 0.78 1049 0.04 19.4 43.1 2.61 19.2 1.11 1.67 19.5 0.12 365 0.65 18.6 68.0 ZK7603-2 1917 65.32 12.09 0.12 0.24 0.08 2.19 4.65 3.62 101 0.60 51.7 1.46 1729 0.03 33.0 6.72 2.55 17.3 1.02 0.29 19.4 0.18 628 1.24 11.9 60.5 平均值 64.19 13.88 0.12 1.07 0.31 1.93 3.01 4.17 391 12.1 286 15.1 1233 0.13 624 12.4 10.8 20.4 1.13 0.97 116 0.95 373 1.43 159 66.6 黄铁绢英岩 ZK3001-3 134 63.63 13.92 0.06 0.77 0.21 0.14 1.45 5.08 684 95.0 4727 9.40 693 2.84 5532 9.92 206 25.6 1.54 1.42 392 0.82 79.4 1.22 792 52.5 ZK3001-4 180 64.15 13.76 0.11 1.17 0.30 0.83 0.09 4.24 674 16.1 1083 9.27 556 0.11 4262 15.8 14.6 21.8 1.17 0.66 895 1.12 84.8 1.03 1323 68.3 ZK3011-1 276 63.75 12.22 0.04 3.92 0.40 0.42 0.13 3.83 3601 282 2657 13.2 153 0.09 7389 5.76 33.4 22.4 1.74 0.49 591 8.42 61.2 0.95 1650 39.7 ZK3011-5 471 60.98 12.75 0.17 6.08 0.77 0.59 0.09 3.69 10765 338 2602 142 206 1.11 160 40.4 74.2 18.1 1.39 0.93 434 0.95 66.4 3.05 45.6 91.3 ZK3003-4 912 62.32 14.69 0.10 3.10 0.29 1.00 2.28 4.03 763 16.2 1078 7.21 1031 0.50 86.7 11.9 6.76 22.5 1.27 1.58 217 0.34 205 1.95 20.6 77.7 ZK3004-6 1153 65.15 13.72 0.12 0.45 0.19 1.76 3.43 4.53 143 1.09 134 1.29 1455 0.05 709 4.12 4.27 18.0 1.06 0.52 77.3 0.12 364 1.90 212 70.1 ZK3008-3 1458 59.66 13.69 0.13 7.96 0.49 0.12 0.06 4.20 8922 108 3363 234 264 2.81 541 15.8 317 21.8 1.32 1.73 988 2.53 22.1 3.54 156 94.4 平均值 62.81 13.54 0.10 3.35 0.38 0.70 1.07 4.23 3650 122 2235 59.5 623 1.07 2669 14.8 93.7 21.5 1.36 1.05 513 2.04 126 1.95 600 70.6 金矿体 ZK3004-4 871 66.88 12.97 0.11 1.56 0.31 0.97 1.61 4.07 1994 803 1178 124 903 0.14 5282 10.4 12.4 17.1 1.20 1.42 225 0.50 207 1.31 951 84.2 ZK3004-7 1250 61.35 14.13 0.10 1.37 0.35 1.56 0.10 4.43 1396 1311 1848 7.88 207 3.28 53.0 5.12 3.48 20.6 1.46 0.28 446 0.42 84.4 3.92 19.6 73.1 ZK3006-4 1252 60.05 13.31 0.13 3.79 0.39 1.66 0.47 4.18 1238 42.7 3008 32.2 721 0.79 804 12.6 31.5 19.1 1.33 1.51 832 4.30 98.8 1.79 175 79.4 ZK3006-5 1349 57.24 13.64 0.12 1.57 0.43 2.09 0.08 4.86 1978 4321 3158 23.2 440 8.39 21.9 4.71 79.2 17.8 1.40 0.24 396 0.28 75.3 5.59 7.34 77.2 ZK3008-4 1569 63.41 12.77 0.13 3.13 0.78 0.20 0.11 4.34 6310 6194 3680 26.8 281 34.6 28.7 8.77 2.91 26.1 1.61 0.31 36.1 0.32 47.3 5.63 7.23 92.0 ZK3008-5 1574 61.57 13.54 0.12 4.88 0.77 0.11 0.16 4.44 11484 7367 5111 36.1 181 17.4 16.2 7.37 3.90 26.8 1.56 0.65 124 0.23 21.4 5.08 6.72 87.0 平均值 61.75 13.40 0.12 2.72 0.50 1.10 0.42 4.39 4067 3340 2997 41.7 456 10.8 1034 8.16 22.2 21.3 1.43 0.74 343 1.01 89.0 3.89 194 82.2 中国东部花岗岩 72.07 14.05 0.23 1.94 0.60 1.30 3.82 4.27 70.0 0.38 0.05 0.70 785 0.10 0.05 6.30 4.90 17.8 1.10 0.50 21.0 0.12 245 0.49 36.0 155 注:主量元素含量单位为%,微量和稀土元素含量单位为10-6,Au、Cd含量单位为10-9 表 2 三山岛北海域金矿床矿物生成顺序
Table 2. Generalized generation sequence diagram of the Haiyu Au deposit
表 3 三山岛北海域金矿床不同阶段含矿石英脉流体包裹体特征及显微测温结果
Table 3. Charcaterristics and microthermometric results of fluid inclusions in quartz crystals from the Haiyu gold deposit
阶段 样品号 主矿物 测试数
量/个包裹体特征 均一
相态ThCO2 /℃ Th-tot /℃ 盐度/
%NaCleqv压力/MPa 类型 大小/μm 气体体积
分数/%范围个数
(n)平均 范围个数
(n)平均 Ⅱ bgt29 石英 24 H-C型 3~15 10~30 液相 29.6~31.2 30.2 168~275 198 2.96~7.38 248~308 bgt30 石英 17 H-C型 2~7 10~15 液相 26.3~28.0 27.2 126~256 194 4.07~7.54 286~313 bgt31 石英 18 H-C型 2~9 10~30 液相 23.7~31.1 28.5 128~251 175 4.96~8.03 297~355 bgt32 石英 32 H-C型 3~20 10~30 液相 30.2~31.2 30.7 151~350 233 3.33~8.51 262~330 bgt35 石英 16 H型 2~7 10~15 液相 135~235 190 2.77~7.87 bgt36 石英 17 H-C型 3~7 10~35 液相 26.8~31.2 30.1 171~343 227 2.90~10.48 240~273 bgt37 石英 21 H-C型 2~13 5~30 液相 13.9~31.2 30.7 171~343 196 2.96~8.03 205~294 Ⅲ bgt26 石英 30 H-C型 3~17 10~35 液相 30.2~31.2 30.7 171~343 213 2.2~5.86 297~355 bgt27 石英 4 H型 2~10 10 液相 142~147 145 0.88~1.06 bgt28 石英 8 H型 2~7 5~15 液相 146~210 179 1.02~2.24 Ⅳ bgt33 石英 31 H型 3~10 10~15 液相 143~182 161 2.0~6.59 bgt34 石英 8 H型 2~6 10 液相 118~198 153 1.02~3.06 表 4 三山岛北海域金矿床不同蚀变带中元素平均得失量
Table 4. Average gain and loss of elements in the different alteration zones of Haiyu gold deposit
岩性 SiO2 TiO2 TFe2O3 MgO CaO Na2O K2O S Au Ag As Ba 二长花岗岩 -7.48 -0.11 -0.92 -0.43 0.14 0.23 -0.40 77.3 1.96 75.7 0.59 424 钾化带 -9.46 -0.08 -1.23 -0.37 0.41 0.68 -1.13 -26.9 1.85 47.1 0.36 644 绢英岩化带 -7.09 -0.11 -0.85 -0.29 0.66 -0.76 -0.05 326 11.9 290 14.5 463 黄铁绢英岩化带 -6.88 -0.12 1.54 -0.21 -0.58 -2.69 0.12 3719 127 2320 61.0 -139 金矿体 -7.30 -0.11 0.91 -0.07 -0.15 -3.37 0.33 4196 3503 3144 43.1 -307 岩性 Bi Cd Cr Cu Ga Ge Pb Sb Sr W Zn Zr 二长花岗岩 -0.04 53.9 1.25 -1.78 1.93 -0.05 7.57 0.08 195 -0.09 5.05 -94.0 钾化带 -0.06 66.5 2.28 -2.04 0.9 -0.43 1.94 0.11 353 -0.13 1.19 -83.9 绢英岩化带 0.03 631 6.28 6.00 2.82 0.04 96.3 0.84 132 0.96 125 -87.6 黄铁绢英岩化带 1.01 2770 9.06 92.3 4.48 0.31 512 2.00 -114 1.53 587 -81.7 金矿体 11.2 1085 2.26 18.4 4.50 0.40 339 0.94 -152 3.59 168 -68.8 注:主量元素含量单位为%,微量元素含量单位为10-6, Au、Ag含量单位为10-9 -
[1] Zhai M G, Santosh M.The early Precambrian odyssey of the North China Craton:a synoptic overview[J].Gondwana Research, 2011, 20:6-25. http://www.sciencedirect.com/science/article/pii/S1342937X11000402
[2] Goldfarb R J, Santosh M.The dilemma of the Jiaodong gold deposits:Are they unique?[J].Geoscience Frontiers, 2014, 5(2):139-153. http://www.cnki.com.cn/Article/CJFDTotal-GSFT201402001.htm
[3] 杨立强, 邓军, 王中亮, 等.胶东中生代金成矿系统[J].岩石学报, 2014, 30(9):2447-2467. http://d.wanfangdata.com.cn/Periodical/ysxb98201409001
[4] Yang L Q, Deng J, Goldfarb R J, et al.40Ar/39Ar geochronological constraints on the formation of the Dayingezhuang gold deposit:New implications for timing and duration of hydrothermal activity in the Jiaodong gold province, China[J].Gondwana Research, 2014, 25(4):1469-1483. http://www.sciencedirect.com/science/article/pii/S1342937X13002190
[5] Yang L Q, Deng J, Guo R P, et al.World-class Xincheng gold deposit:An example from the giant Jiaodong gold province[J].Geoscience Frontiers, 2016, 7(3):419-430. https://www.sciencedirect.com/science/article/pii/S1674987115000961
[6] 宋明春, 张军进, 张丕建, 等.胶东三山岛北部海域超大型金矿床的发现及其构造-岩浆背景[J].地质学报, 2015, 89(2):365-383. http://d.wanfangdata.com.cn/Periodical/dizhixb201502012
[7] Qiu, Y M, Groves D I, McNaughton N J, et al.Nature, age, and tectonic setting of granitoid-hosted, orogenic gold deposits of the Jiaodong Peninsula, eastern North China craton, China[J].Mineralium Deposita, 2002, 37:283-305. http://link.springer.com/article/10.1007/s00126-001-0238-3
[8] Li X C, Fan H R, Santosh M, et al.Hydrothermal alteration associated with Mesozoic granite-hosted gold mineralization at the Sanshandao deposit, Jiaodong Gold Province, China[J].Ore Geology Reviews, 2013, 53:403-421. https://www.sciencedirect.com/science/article/pii/S0169136813000474
[9] Li J W, Vasconcelos P M, Zhang J, et al.40Ar/39Ar constraints on a temporal link between gold mineralization, magmatism, and continental margin transtension in the Jiaodong Gold Province, eastern China[J].Journal of Geology, 2003, 111(6):741-751. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=11653428&site=ehost-live
[10] Li J W, Vasconcelos P M, Zhou M F, et al.Geochronology of the Pengjiakuang and Rushan gold deposits, Eastern Jiaodong Gold Province, Northeastern China:implications for regional mineralization and geodynamic setting[J].Economic Goelogy, 2006, 101:1023-1038. http://www.researchgate.net/publication/43455922_Geochronology_of_the_Pengjiakuang_and_Rushan_Gold_Deposits_Eastern_Jiaodong_Gold_Province_Northeastern_China_Implications_for_Regional_Mineralization_and_Geodynamic_Setting
[11] Mao J W, Wang Y T, Li H M, et al.The relationship of mantle-derived fluids to gold metallogenesis in the Jiaodong Peninsula:Evidence from D-O-C-S isotope systematics[J].Ore Geology Reviews, 2008, 33(3):361-381. http://www.sciencedirect.com/science/article/pii/S0169136807000364
[12] Song M C, Li S Z, Santosh M, et al.Types, characteristics and metallogenesis of gold deposits in the Jiaodong Peninsula, Eastern North China Craton[J].Ore Geology Reviews, 2015, 65:612-625. http://www.sciencedirect.com/science/article/pii/S0169136814001528
[13] Yang L Q, Deng J, Wang Z L, et al.Relationships Between Gold and Pyrite at the Xincheng Gold Deposit, Jiaodong Peninsula, China:Implications for Gold Source and Deposition in a Brittle Epizonal Environment[J].Economic Geology, 2016, 111(1):105-126. http://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/111/1/105/3472607/105-126.pdf
[14] Fan H R, Zhai M G, Xie Y H, et al.Ore-forming fluids associated with granite-hosted gold mineralization at the Sanshandao deposit, Jiaodong gold province, China[J].Mineralium Deposita, 2003, 38(6):739-750. http://link.springer.com/article/10.1007/s00126-003-0368-x
[15] 张潮, 黄涛, 刘向东, 等.胶西北新城金矿床热液蚀变作用[J].岩石学报, 2016, 32(8):2433-2450.
[16] 张炳林, 单伟, 李大鹏, 等.胶东大尹格庄金矿床热液蚀变作用[J].岩石学报, 2017, 33(7):2256-2272. http://d.wanfangdata.com.cn/Periodical/ysxb98201707020
[17] 凌洪飞, 胡受奚, 孙景贵, 等.胶东金青顶和大尹格庄金矿床花岗质围岩的蚀变地球化学研究[J].矿床地质, 2002, 21(2):187-199. http://www.cnki.com.cn/Article/CJFDTotal-KCDZ200202014.htm
[18] 刘殿浩, 吕古贤, 张丕建, 等.胶东三山岛断裂构造蚀变岩三维控矿规律研究与海域超大型金矿的发现[J].地学前缘, 2015, 22(4):162-172. http://qikan.cqvip.com/Qikan/Article/Detail?id=665043586
[19] 宋英昕.胶东三山岛北部海域金矿床蚀变矿物短波红外光谱特征及其对深部找矿的启示[J].黄金科学技术, 2017, 25(3):54-60. http://d.wanfangdata.com.cn/Periodical/hjkxjs201703009
[20] 张军进, 丁正江, 刘殿浩, 等.山东莱州三山岛北部海域超大型金矿勘查实践与找矿成果[J].黄金科学技术, 2016, 24(1):1-10. http://www.cnki.com.cn/Article/CJFDTotal-HJKJ201601001.htm
[21] Zhao G C, Wilde S A, Cawood P A, et al.Archean blocks and their boundaries in the North China Craton:lithological, geochemical, structural and p-T path constraints and tectonic evolution[J].Precambrian Research, 2001, 107:45-73. http://www.sciencedirect.com/science/article/pii/S0301926800001546
[22] 沈其韩, 钱祥麟.中国太古宙地质体组成、阶段划分和演化[J].地球学报, 1995, (2):113-120. http://www.cnki.com.cn/Article/CJFDTotal-DQXB502.000.htm
[23] Zhou T H, Lü G X.Tectonics, granitoids and mesozoic gold deposits in East Shandong, China[J].Ore Geology Reviews, 2000, 16:71-90. http://www.sciencedirect.com/science/article/pii/S0169136899000232
[24] Zou Y, Zhai M G, Santosh M, et al.Highpressure pelitic granulites from the Jiao-Liao-Ji Belt, North China Craton:a complete p-t path and its tectonic implications[J].Journal of Asian Earth Science, 2017, 134:103-121. http://www.sciencedirect.com/science/article/pii/S1367912016303169
[25] Hou M L, Jiang Y H, Jiang S Y, et al.Contrasting origins of late Mesozoic adakitic granitoids from the northwestern Jiaodong Peninsula, east China:implications for crustal thickening to delamination[J].Geological Magazine, 2007, 144:619-631. http://www.ingentaconnect.com/content/cupr/00167568/2007/00000144/00000004/art00002
[26] Wang L G, Qiu Y M, McNaughton N J, et al.Constraints on crustal evolution and gold metallogeny in the northwestern Jiaodong Peninsula, China, from SHRIMP U-Pb zircon studies of granitoids[J].Ore Geology Reviews, 1998, 13:275-291. http://www.sciencedirect.com/science/article/pii/S016913689700022X
[27] Yang K F, Fan H R, Santosh M, et al.Reactivation of the Archean lower crust:implications for zircon geochronology, elemental and Sr-Nd-Hf isotopic geochemistry of late Mesozoic granitoids from northwestern Jiaodong Terrane, the North China Craton[J].Lithos, 2012, 146:112-127. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ201301005036.htm
[28] Goss S C, Wilde S A, Wu F Y, et al.The age, isotopic signature and significance of the youngest Mesozoic granitoids in the Jiaodong Terrane, Shandong Province, North China Craton[J].Lithos, 2010, 120:309-326. http://www.sciencedirect.com/science/article/pii/S0024493710002215
[29] Li X C, Fan H R, Santosh M, et al.An evolving magma chamber within extending lithosphere:an integrated geochemical, isotopic and zircon U-Pb geochronological study of the Gushan granite, eastern North China Craton[J].J.Asian Earth Science, 2012, 50:27-43. http://www.sciencedirect.com/science/article/pii/S1367912012000582
[30] Jiang P, Yang K F, Fan H R, et al.Titanite-scale insights into multi-stage magma mixing in Early Cretaceous of NW Jiaodong terrane, North China Craton[J].Lithos, 2016, 258:197-214. http://www.sciencedirect.com/science/article/pii/S0024493716300639
[31] Zhang X, Cawood P A, Wilde S A, et al.Geology and timing of mineralization at the Cangshang gold deposit, north-western Jiaodong Peninsula, China[J].Mineralium Deposita, 2003, 38(2):141-153. http://link.springer.com/article/10.1007/s00126-002-0290-7
[32] Zhang L, Yang L Q, Wang Y, et al.Thermochronologic constrains on the processes of formation and exhumation of the Xinli orogenic gold deposit, Jiaodong Peninsula, eastern China[J].Ore Geology Reviews, 2017, 81:140-153. http://www.sciencedirect.com/science/article/pii/S0169136816304383
[33] Hu F F, Fan H R, Jiang X H, et al.Fluid inclusions at different depths in the Sanshandao gold deposit, Jiaodong Peninsula, China[J].Geofluids, 2014, 13(4):528-541. http://onlinelibrary.wiley.com/doi/abs/10.1111/gfl.12065
[34] 郭敬辉, 陈福坤, 张晓曼, 等.苏鲁超高压带北部中生代岩浆侵入活动与同碰撞-碰撞后构造过程:锆石U-Pb年代学[J].岩石学报, 2005, 21(4):255-275. http://d.wanfangdata.com.cn/periodical/ysxb98200504025
[35] Zen E A, Hammarstrom J M.Magmatic epidote and its petrologic significance[J].Geology, 1984, 12:515-518. http://adsabs.harvard.edu/abs/1984Geo....12..515Z
[36] 陈光远, 孙岱生, 邵岳.胶东昆嵛山二长花岗岩副矿物成因矿物学研究[J].现代地质, 1996, 10(2):175-186. http://www.cnki.com.cn/Article/CJFDTotal-XDDZ602.004.htm
[37] 陈光远, 孙岱生, 邵伟.胶东郭家岭花岗闪长岩成因矿物学与金矿化[M].武汉:中国地质大学出版社, 1993:1-230.
[38] 林文蔚, 殷秀兰.水-岩反应中成矿流体的浓缩作用及其应用[J].矿物岩石地球化学通报, 1999, 18(1):10-13. http://www.cqvip.com/QK/84215X/19991/3000839838.html
[39] 鄢明才, 迟清华.中国东部地壳与岩石的化学组成[M].北京:科学出版社, 1997:39-40.
[40] Bodnar R J.Revised equation and table for determining the freezing point depression of H2O NaCl solutions[J].Geochimica et Cosmochimica Acta, 1993, 57(3):683-684. http://www.sciencedirect.com/science/article/pii/001670379390378A
[41] Collins P L F.Gas hydrates in CO2-bearing fluid inclusions and the use of freezing data for estimation of salinity[J].Economic Geology, 1979, 74(6):1435-1444. http://ci.nii.ac.jp/naid/80000421141
[42] 李伟, 谢桂青, 张志远, 等.流体包裹体和C-H-O同位素对湘中古台山金矿床成因制约[J].岩石学报, 2016, 32(11):3489-3506. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201611019.htm
[43] 卫清, 范宏瑞, 蓝廷广, 等.胶东寺庄金矿床成因:流体包裹体与石英溶解度证据[J].岩石学报, 2015, 31(4):1049-1062. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201504013.htm
[44] Gresens R L.Composition-volume relationships of metasomatism[J].Chemical Geology, 1967, 2:47-65. http://www.sciencedirect.com/science/article/pii/0009254167900046
[45] Grant J A.The isocon diagram-a simple solution to Gresens' equation for metasomatic alteration[J].Economic Geology, 1976, 81(8):1976-1982. http://ci.nii.ac.jp/naid/80003270789
[46] Grant J A.The isocon diagram-a simple solution to Gresens equation for metasomatic alteration[J].Economic Geology, 1986, 81:1976-1982. http://ci.nii.ac.jp/naid/80003270789
[47] Liu Y P, Ma S M, Zhu L X, et al.The multi-attribute anomaly structure model:An exploration tool for the Zhaojikou epithermal Pb-Zn deposit, China[J].Journal of Geochemical Exploration, 2016, 169:50-59. http://www.sciencedirect.com/science/article/pii/S0375674216301492
[48] Grant J A.Isocon analysis:A brief review of the method and applications[J].Physics and Chemistry of the Earth, 2005, Parts A/B/C 30(17/18):997-1004. http://www.sciencedirect.com/science/article/pii/S1474706505000458
[49] Rubin J N, Henry C D, Price J G.The mobility of zirconium and other-immobile elements during hydrothermal alteration[J].Chemical Geology, 1993, 110(1/3):29-47. http://www.sciencedirect.com/science/article/pii/000925419390246F
[50] Ague J J.Evidence for major mass transfer and volume strain during regional metamorphism of pelites[J].Geology, 1991, 19(8):855-858. http://ci.nii.ac.jp/naid/80006058470
[51] Ague J J.Extreme channelization of fluid and the problem of element mobility during Barrovian metamorphism[J].American Mineralogist, 2011, 96(2/3), 333-352. http://www.degruyter.com/view/j/ammin.2011.96.issue-2-3/am.2011.3582/am.2011.3582.xml?format=INT
[52] 艾金彪, 马生明, 朱立新, 等.长江中下游马头斑岩型铜钼矿床常量元素、稀土元素特征及迁移规律[J].地质学报, 2013, 87(5):691-702. http://d.wanfangdata.com.cn/Periodical/dizhixb201305007
[53] 卢焕章.CO2流体与金矿化:流体包裹体的证据[J].地球化学, 2008, 37(4):321-328. http://www.cqvip.com/QK/92960X/20084/27597081.html
[54] Phillips G N, Evans K A.Role of CO2 in the formation of gold deposits[J].Nature, 2004, 429(6994):860-863. http://europepmc.org/abstract/MED/15215861
[55] Diamond L W.Review of the systemtics of CO2-H2O fluid inclusions[J].Lithos, 2001, 55(1/4):69-99. http://www.sciencedirect.com/science/article/pii/S0024493700000396
[56] 刘玄, 范宏瑞, 胡芳芳, 等.胶东大庄子金矿成矿流体及稳定同位素研究[J].矿床地质, 2011, 30(4):675-689. http://d.wanfangdata.com.cn/periodical/kcdz201104007
[57] Tobin H, Vannucchil P, Meschede M.Structure, inferred mechanical properties and implicaitons for fluid transport in the décollement zone, Costa Rica Convergent Margin[J].Geology, 2001, 29(10):907-910. http://adsabs.harvard.edu/abs/2001Geo....29..907T
[58] 邓军, 陈玉民, 刘钦, 等.胶东三山岛断裂带金成矿系统与资源勘查[M].北京:地质出版社, 2010:1-371.
[59] 王中亮.焦家金矿田成矿系统[D].中国地质大学(北京)博士学位论文, 2012: 1-226.
[60] 刘跃.胶东早白垩世早期新城花岗岩成因及其成矿贡献[D].中国地质大学(北京)硕士学位论文, 2015: 1-91.
[61] 王玉荣, 胡受奚.钾交代蚀变过程中金活化转移实验研究——以华北地台金矿为例[J].中国科学, 2000, 30(5). http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200005008
[62] Omella M E, Gong E P, Sun X D, et al.K-metasomatism of plagioclase to produce perthite in granitic rocks of Zhejiang province, Southeast China[J].Geology and resources, 2003, 12(3):129-138. http://www.zhangqiaokeyan.com/academic-journal-cn_geology-resources_thesis/0201253443367.html
[63] 李瑞红, 刘育, 李海林, 等.胶东新城金矿床控矿构造变形环境:显微构造和EBSD组构约束[J].岩石学报, 2014, 30(9):2546-2558. http://qikan.cqvip.com/Qikan/Article/Detail?id=662619423
[64] 胡受奚, 叶瑛, 方长泉.交代蚀变岩岩石学及其找矿意义[M].北京:地质出版社, 2004:1-264.
[65] Parsapoor A, Khalili M, Mackizadeh M A.The behaviour of trace and rare earth elements (REE) during hydrothermal alteration in the Rangan area (Central Iran)[J].Journal of Asian Earth Sciences, 2009, 34(2):123-134. http://www.sciencedirect.com/science/article/pii/S136791200800062X
[66] Wang Z L, Yang L Q, Guo L N, et al.Fluid immiscibility and gold deposition in the Xincheng deposit, Jiaodong Peninsula, China:A fluid inclusion study[J].Ore Geology Reviews, 2015, 65:701-717. http://www.sciencedirect.com/science/article/pii/S0169136814001395
[67] Yang L Q, Deng J, Guo L N, et al.Origin and evolution of ore fluid, and gold-deposition processes at the giant Taishang gold deposit, Jiaodong Peninsula, eastern China[J].Ore Geology Reviews, 2016, 72:585-602. https://www.sciencedirect.com/science/article/pii/S0169136815300214
[68] 刘育, 杨立强, 郭林楠, 等.胶东大尹格庄金矿床成矿流体组成[J].岩石学报, 2014, 30(9):2507-2517. http://d.wanfangdata.com.cn/Periodical_ysxb98201409005.aspx
[69] 毛景文, 李厚民, 王义天, 等.地幔流体参与胶东金矿成矿作用的氢氧碳硫同位素证据[J].地质学报, 2005, 79(6):839-857. http://d.wanfangdata.com.cn/Periodical/dizhixb200506013
[70] 姜晓辉, 范宏瑞, 胡芳芳, 等.胶东三山岛金矿中深部成矿流体对比及矿床成因[J].岩石学报, 2011, 27(5):1327-1340. http://d.wanfangdata.com.cn/Periodical/ysxb98201105008
[71] 李楠.阳山金矿带成矿作用地球化学[D].中国地质大学(北京)博士学位论文, 2013: 1-147.
[72] Gao Z L, Kwak T A P.The geochemistry of wall rock alteration in turbidite-hosted gold vein deposits, central Victoria, Australia[J].Journal of Geochemical Exploration, 1997, 59(3):259-274. http://www.sciencedirect.com/science/article/pii/S0375674296000799
[73] Li N, Deng J, Yang L Q, et al.Paragenesis and geochemistry of ore minerals in the epizonal gold deposits of the Yangshan gold belt, West Qinling, China[J].Mineralium Deposita, 2014, 49(4):427-449. http://link.springer.com/article/10.1007/s00126-013-0498-8
[74] 祁冬梅, 周汉文, 宫勇军, 等.岩石热液蚀变作用过程元素的活动性——河南祁雨沟金矿Ⅳ号岩体蚀变花岗斑岩的研究[J].岩石学报, 2015, 31(9):2655-2673. http://qikan.cqvip.com/Qikan/Article/Detail?id=666265972
-