Isotope geochemical characteristics of the Zhibo iron deposit in western Tianshan Mountains, Xinjiang
-
摘要:
智博铁矿位于新疆西天山阿吾拉勒铁成矿带东段,矿体以层状、似层状、透镜状产出于下石炭统大哈拉军山组玄武质安山岩中。智博铁矿成矿作用主要划分为岩(矿)浆期和热液期2个成矿期次,包括3个成矿阶段:磁铁矿+透辉石阶段、磁铁矿+绿帘石+钾长石阶段和石英+硫化物+碳酸盐阶段。智博铁矿地球化学特征表明,其成矿构造背景为早石炭世南天山洋向伊犁板块俯冲形成的岛弧环境;火山岩与磁铁矿石具有相同的物质来源,均来源于受俯冲带流体交代的亏损地幔楔部分熔融形成的玄武质岩浆。智博铁矿为岩浆(主要)-热液(次要)复合型矿床,受俯冲流体交代的亏损地幔楔部分熔融形成富铁的玄武质岩浆,岩浆沿深大断裂上侵形成早期火山岩,上侵过程中由于物理化学条件的改变在不混溶作用下形成铁矿浆,铁矿浆侵入早期火山岩地层形成岩浆期磁铁矿体;后期富铁的岩浆或矿浆热液使围岩发生矿化与蚀变,形成热液期磁铁矿体。
Abstract:The Zhibo iron deposit is located in eastern Awulale metallogenic belt of Western Tianshan Mountains.The orebodies of the Zhibo iron deposit are hosted in basaltic andesite of the Lower Carboniferous Dahalajunshan Formation in layered, quasi-lamellar and lenticular forms.The mineralization process of the Zhibo iron deposit can be divided into two metallogenic periods, i.e., magmatic period and hydrothermal period, which consist of three metallogenic stages:magnetite + diopside, magnetite + K-feldspar + epidote and quartz + sulfide + carbonate stages.The geochemical characteristics of the Zhibo iron deposit show that its metallogenic tectonic setting was an island-arc environment.The geochemical data support derivation of volcanic rock and magnetite ore from basaltic magma formed by partial melting of depleted mantle wedge altered by fluids in subduction zones, with the same material source.The Zhibo iron deposit is a magmatic(mainly)-hydrothermal(subordinately) deposit.The basaltic magma intruded upward along deep fault and formed the primitive volcanic rock.Because of the change of physical-chemical conditions during its intrusion, the iron ore slurry was liquidized from the basaltic magma.The intrusion of the iron ore slurry into primitive volcanic rock might have been responsible for the formation of the magmatic type magnetite orebody and the alteration of the surrounding rocks by the residual magmatic hydrothermal fluid for the formation of the hydrothermal type magnetite orebody.
-
Key words:
- andesite /
- geochemistry /
- genesis /
- Zhibo iron deposit /
- western Tianshan
-
-
图 1 智博铁矿矿区地质简图①
Figure 1.
图 3 智博铁矿火山岩(a)和矿石(b)稀土元素球粒陨石标准化配分模式图(球粒陨石标准化值据参考文献[45])
Figure 3.
图 4 智博铁矿火山岩(a)和矿石(b)微量元素原始地幔标准化蛛网图(原始地幔标准化值据参考文献[43])
Figure 4.
图 7 智博铁矿火山岩206Pb/204Pb-207Pb/204Pb图解(底图据参考文献[64])
Figure 7.
图 9 智博铁矿矿石铅同位素Δβ-Δγ成因分类图解(底图据参考文献[70])
Figure 9.
表 1 智博铁矿床成矿期次划分及矿物生成顺序
Table 1. Mineralizing periods and mineral-forming sequence of the Zhibo iron deposit
表 2 智博铁矿火山岩和磁铁矿石主量、微量和稀土元素分析结果
Table 2. Major, trace and rare earth element data of volcanic rocks and iron ore in the Zhibo iron deposit
样号 ZK3601-15 ZK3601-51 ZK3601-52 ZK3601-4[5] ZK3601-9[5] ZK3601-11[5] PC-10-5b[38] PC-10-2a[38] PC-10-1b[38] ZK3601-7 ZK3601-14 ZK3601-17 ZK3601-28 ZK3601-34 ZK3601-41 岩性 玄武安山岩 玄武安山岩 粗面安山岩 粗面安山岩 玄武安山岩 玄武质粗安岩 粗面安山岩 玄武质粗安岩 安山岩 块状矿石 浸染状矿石 角砾状矿石 块状矿石 块状矿石 块状矿石 SiO2 53.15 52.70 57.77 54.91 52.77 55.04 60.45 55.43 57.54 13.21 19.30 23.58 5.13 4.90 5.72 TiO2 0.78 0.99 0.65 0.93 1.00 0.94 0.64 0.53 0.61 0.10 0.17 0.10 0.08 0.08 0.08 Al2O3 12.42 15.08 16.16 15.79 15.19 14.89 17.96 16.15 15.19 0.87 3.73 3.29 0.27 0.00 0.00 TFe2O3 8.97 9.66 7.69 7.52 6.86 7.97 6.27 6.42 6.71 78.17 66.34 60.78 90.11 90.39 84.62 MnO 0.23 0.15 0.09 0.30 0.27 0.23 0.06 0.12 0.13 0.24 0.24 0.17 0.12 0.12 0.10 MgO 9.71 3.29 4.19 4.61 6.56 6.23 2.93 1.50 4.25 3.49 2.99 3.85 0.85 1.27 1.54 CaO 8.84 13.06 3.44 5.19 10.21 6.49 2.20 10.62 7.61 3.53 6.04 5.79 1.87 2.14 2.03 Na2O 3.54 1.14 5.79 5.40 4.24 4.86 6.22 4.90 5.32 0.19 0.19 0.54 0.11 0.10 0.17 K2O 0.64 1.55 2.20 1.80 0.70 1.31 1.78 0.94 0.42 0.08 0.84 1.73 0.04 0.04 0.05 P2O5 0.12 0.22 0.17 0.14 0.13 0.17 0.14 0.11 0.09 0.02 0.07 0.08 0.06 0.08 0.13 烧失量 1.57 2.07 1.81 3.35 2.03 1.86 1.70 2.79 1.74 0.00 0.00 0.00 0.00 0.00 3.57 总计 99.97 99.91 99.97 99.94 99.96 99.98 100.35 99.51 99.61 99.90 99.91 99.90 98.65 99.11 98.01 ALK 4.18 2.69 7.99 7.20 4.94 6.17 8.00 5.84 5.74 — — — — — — Mg# 68.20 40.29 51.91 54.85 65.45 60.77 48.08 31.64 55.65 — — — — — — La 4.64 29.20 6.53 10.20 6.58 6.50 28.41 12.36 8.33 1.00 23.00 0.98 8.31 7.34 2.57 Ce 19.90 60.30 13.40 22.90 21.60 18.60 57.50 25.79 17.15 1.54 31.20 1.54 14.10 12.80 4.79 Pr 4.00 7.80 1.78 3.25 3.36 2.88 5.91 2.97 2.02 0.16 2.65 0.19 1.25 1.36 0.52 Nd 19.90 34.70 8.63 14.20 14.80 14.80 23.65 12.92 9.09 0.71 7.92 0.90 4.58 4.52 2.20 Sm 4.34 7.52 2.07 3.36 3.96 4.92 4.36 2.97 2.28 0.19 1.10 0.35 0.61 0.72 0.38 Eu 1.27 3.03 0.58 1.10 1.19 1.22 1.08 1.56 0.90 0.04 0.26 0.07 0.10 0.06 0.07 Gd 4.97 7.67 2.70 3.49 4.33 4.75 5.03 3.83 3.03 0.24 1.34 0.35 0.51 0.55 0.74 Tb 0.90 1.53 0.63 0.72 0.79 0.83 0.65 0.54 0.44 0.03 0.16 0.04 0.09 0.12 0.12 Dy 4.89 8.44 3.46 3.95 4.66 5.06 3.89 3.33 2.71 0.28 1.17 0.27 0.39 0.47 0.73 Ho 1.26 1.78 0.83 0.81 1.14 1.21 0.77 0.67 0.54 0.07 0.27 0.08 0.10 0.14 0.17 Er 3.89 5.26 2.45 2.82 3.31 4.12 2.39 2.00 1.63 0.17 0.83 0.22 0.16 0.51 0.65 Tm 0.63 0.89 0.37 0.44 0.61 0.61 0.33 0.26 0.22 0.03 0.13 0.05 0.06 0.03 0.10 Yb 3.84 5.23 2.58 2.59 3.54 3.94 2.28 1.84 1.58 0.26 0.92 0.53 0.16 0.49 0.69 Lu 0.68 0.78 0.54 0.42 0.67 0.54 0.32 0.27 0.24 0.05 0.15 0.08 0.03 0.07 0.18 Li 12.80 5.60 8.44 10.40 14.50 10.20 4.34 1.30 3.29 2.07 2.97 2.47 3.10 2.80 4.63 Be 1.03 1.35 1.41 1.20 0.58 0.74 1.23 0.95 1.17 0.58 1.22 0.94 0.11 0.35 0.50 Sc 28.90 20.90 18.70 23.90 36.80 30.30 29.50 33.70 36.31 1.86 6.65 4.26 0.97 0.88 1.45 V 214.00 131.00 116.00 184.00 286.00 223.00 112.00 171.30 203.80 168.00 229.00 233.00 344.00 184.00 30.20 Cr 667.00 18.60 16.30 84.00 172.00 155.00 20.48 116.80 185.00 5.83 19.30 5.43 3.73 1.65 3.32 Co 26.40 18.00 15.40 23.20 14.60 13.00 13.41 19.97 13.83 15.60 15.20 17.00 84.10 57.50 202.00 Ni 96.80 40.90 14.50 52.90 35.60 40.50 18.57 20.45 32.69 115.00 81.30 129.00 386.00 246.00 44.20 Cu 8.63 12.30 6.95 139.00 20.20 9.07 9.57 576.90 14.01 5.58 10.90 4.85 17.40 5.53 175.00 Zn 118.00 58.10 53.10 115.00 114.00 102.00 38.60 23.82 39.68 102.00 204.00 69.40 44.50 44.00 40.90 Ga 12.30 23.70 13.20 13.50 12.80 15.60 26.15 25.86 18.90 12.60 9.57 6.24 6.12 6.97 15.10 Rb 25.60 51.00 83.80 53.30 39.80 51.10 71.39 26.71 15.04 5.39 30.50 57.80 4.79 4.41 5.36 Sr 271.00 793.00 198.00 220.00 418.00 301.00 170.80 589.70 491.50 50.90 334.00 30.30 11.20 12.60 7.77 Y 31.30 48.80 22.60 22.40 30.20 33.20 18.38 15.96 13.03 2.13 7.66 2.53 2.40 4.35 6.06 Nb 3.93 10.40 6.96 3.60 3.75 4.27 6.38 3.98 3.98 0.18 1.30 0.31 0.37 0.17 0.46 Mo 43.50 0.69 0.27 0.96 0.15 0.74 — — — 1.51 3.27 723.00 4.28 1.31 1.14 Cd 0.24 0.10 0.01 0.01 0.02 0.09 0.14 0.14 0.09 0.13 2.26 3.08 0.04 0.06 0.02 In 0.15 0.35 0.04 0.06 0.10 0.14 0.01 0.15 0.09 0.04 0.04 0.04 0.03 0.02 0.04 Sb 1.37 5.07 1.60 0.56 2.08 0.65 — — — 1.07 2.33 0.54 1.33 2.40 7.84 Cs 0.33 0.49 0.49 0.45 1.22 0.43 1.12 0.23 0.30 0.25 0.21 0.24 0.23 0.27 0.22 Ba 105.00 234.00 175.00 478.00 106.00 509.00 179.50 130.80 60.89 7.27 102.00 114.00 2.42 3.12 6.95 Ta 0.40 0.87 1.66 0.30 0.40 0.38 0.50 0.31 0.31 0.03 0.09 0.03 0.03 0.06 0.05 Pb 3.04 12.20 1.75 2.58 3.44 1.49 2.61 5.21 4.04 1.70 8.32 1.34 2.80 1.44 4.49 Bi 0.02 0.28 0.07 0.05 0.05 0.04 0.01 0.20 0.11 0.45 0.18 0.15 0.38 0.39 0.97 Th 11.80 8.04 3.56 4.66 4.93 5.52 4.23 2.67 2.60 0.25 1.39 0.26 0.36 0.28 0.48 U 9.56 4.68 0.93 1.40 7.04 5.91 1.16 1.01 1.30 3.16 4.30 2.21 8.06 2.46 3.54 Zr 199.00 344.00 193.00 197.00 171.00 200.00 123.30 77.76 76.77 7.07 46.40 23.40 3.70 2.14 12.50 Hf 5.84 9.12 4.88 4.77 4.83 5.56 3.53 2.28 2.29 0.09 1.15 0.58 0.05 0.08 0.39 ΣREE 75.11 174.12 46.54 70.26 70.54 69.98 136.57 71.31 50.16 4.76 71.10 5.64 30.45 29.18 13.92 LREE 54.05 142.55 32.99 55.01 51.49 48.92 120.91 58.57 39.77 3.63 66.13 4.02 28.95 26.80 10.54 HREE 21.06 31.57 13.56 15.25 19.05 21.06 15.66 12.74 10.39 1.13 4.97 1.63 1.50 2.38 3.38 LREE/HREE 2.57 4.51 2.43 3.61 2.70 2.32 7.72 4.60 3.83 3.21 13.31 2.47 19.34 11.27 3.11 LaN/YbN 0.87 4.00 1.82 2.82 1.33 1.18 8.94 4.82 3.78 2.70 18.01 1.31 37.73 10.70 2.66 δEu 0.83 1.21 0.74 0.97 0.87 0.76 0.70 1.41 1.05 0.60 0.64 0.59 0.55 0.30 0.40 δCe 1.05 0.96 0.95 0.97 1.12 1.05 1.03 1.01 0.99 0.86 0.82 0.83 0.96 0.92 0.96 注:测试单位为核工业北京地质研究院,TFeO=0.8998TFe2O3,Mg#=100Mg2+/(Mg2++TFe2+);部分火山岩地球化学数据据参考文献[5, 38]。主量元素含量单位为%,微量和稀土元素含量单位为10-6 表 3 智博铁矿火山岩Sr-Nd同位素组成
Table 3. Sr-Nd isotopic data of volcanic rocks in the Zhibo iron deposit
编号 Rb/10-6 Sr/10-6 87Rb/86Sr 87Sr/86Sr 2σ εSr(0) εSr(t) (87Sr/86Sr)i Sm/10-6 Nd/10-6 147Sm/144Nd 143Nd/144Nd 2σ εNd(0) εNd(t) (143Nd/144Nd)i ZK3601-15 25.1 255 0.2842 0.7064167 0.000011 27.2 14.2 0.70512 4.66 17.6 0.1604 0.512729 0.000009 1.8 3.3 0.512393 ZK3601-51 45.9 765 0.1735 0.7060112 0.000008 21.5 15.6 0.70522 6.97 30.2 0.1395 0.512562 0.000008 -1.5 0.9 0.512270 ZK3601-52 81.4 188 1.2531 0.7104298 0.000013 84.2 8.5 0.70472 2.26 7.79 0.1753 0.512751 0.000009 2.2 3.1 0.512384 表 4 智博铁矿火山岩与矿石铅同位素组成
Table 4. Pb isotope data of volcanic rocks and iron ore in the Zhibo iron deposits
样品号 类型 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb (206Pb/204Pb)t (207Pb/204Pb)t (208Pb/204Pb)t ZK3601-15 玄武安山岩 19.567 15.579 39.370 17.497 15.470 37.193 ZK3601-51 玄武安山岩 19.327 15.625 38.633 17.882 15.549 37.849 ZK3601-52 粗面安山岩 19.449 15.585 39.443 17.416 15.478 36.993 ZK3601-17 磁铁矿石 22.584 15.757 38.051 16.135 15.416 37.811 ZK3601-34 磁铁矿石 22.593 15.747 37.968 15.921 15.395 37.730 ZK3601-41 磁铁矿石 20.193 15.624 37.981 17.214 15.467 37.854 -
[1] 姜常义, 吴文奎, 张学仁, 等.西天山阿吾拉勒地区岩浆活动与构造演化[J].西安地质学院学报, 1996, 18(2):18-24. http://www.cnki.com.cn/Article/CJFDTotal-XAGX602.003.htm
[2] 王永新, 田培仁.浅论新疆海相火山热水沉积矿床的分带及其找矿意义[J].地质与勘探, 2003, 39(4):6-11. doi: 10.3969/j.issn.0495-5331.2003.04.002
[3] 刘宽厚, 庄道泽, 焦学军.新疆西天山1:50万化探成果评估与异常查证对策[J].地质与勘探, 2003, 39(6):6-9. http://d.old.wanfangdata.com.cn/Periodical/dzlp200806004
[4] 李大鹏, 杜杨松, 庞振山, 等.西天山阿吾拉勒石炭纪火山岩年代学和地球化学研究[J].地球学报, 2013, 34(1):1-17. http://d.old.wanfangdata.com.cn/Periodical/dqxb201302007
[5] 李大鹏.新疆西天山阿吾拉勒成矿带叠加成矿作用[D].中国地质大学(北京)博士学位论文, 2012.
http://cdmd.cnki.com.cn/Article/CDMD-11415-1013136614.htm [6] 汪帮耀, 胡秀军, 王江涛, 等.西天山查岗诺尔铁矿矿床地质特征及矿床成因研究[J].矿床地质, 2011, (3):385-402. doi: 10.3969/j.issn.0258-7106.2011.03.002
[7] 汪帮耀.新疆西天山查岗诺尔和智博火山岩型铁矿矿床地质特征与成因研究[D].中国地质大学(北京)博士学位论文, 2011.
http://cdmd.cnki.com.cn/Article/CDMD-10710-1012142433.htm [8] 洪为.新疆西天山查岗诺尔铁矿地质特征与矿床成因[D].中国地质科学院硕士学位论文, 2012.
http://cdmd.cnki.com.cn/article/cdmd-82501-1012371255.htm [9] 张作衡, 洪为, 蒋宗胜, 等.新疆西天山晚古生代铁矿床的地质特征、矿化类型及形成环境[J].矿床地质, 2012, 31(5):941-964. doi: 10.3969/j.issn.0258-7106.2012.05.001
[10] Zhang X, Tian J Q, Gao J, et al.Geochronology and geochemistry of granitoid rocks from the Zhibo syngenet icvolcanogenic iron ore deposit in the western Tianshan Mountains(NW China):Constraints on the age of mineralization and tectonic setting[J].Gondw ana Research, 2012, 22(2):585-596. https://www.researchgate.net/publication/281193578_Geochronology_and_geochemistry_of_granitoid_rocks_from_the_Zhibo_syngenetic_volcanogenic_iron_ore_deposit_in_the_Western_Tianshan_Mountains_NW-China_Constraints_on_the_age_of_mineralization_and_tecton
[11] 沈立军.新疆智博铁矿特征和成因[D].中国地质大学(北京)硕士学位论文, 2013.
http://cdmd.cnki.com.cn/Article/CDMD-11415-1013273047.htm [12] 蒋宗胜.西天山智博铁矿石炭纪火山作用与铁成矿研究[D].中国地质科学院博士学位论文, 2014.
http://cdmd.cnki.com.cn/Article/CDMD-82501-1014269102.htm [13] 马方彬.新疆智博铁矿地质地球化学特征和成因[D].中国地质大学(北京)硕士学位论文, 2014.
http://cdmd.cnki.com.cn/Article/CDMD-11415-1015554528.htm [14] 王志华, 张作衡, 蒋宗胜, 等.西天山智博铁矿磁铁矿成分特征及其矿床成因意义[J].矿床地质, 2012, 31(5):983-998. doi: 10.3969/j.issn.0258-7106.2012.05.003
[15] 蒋宗胜, 张作衡, 王志华, 等.新疆西天山智博铁矿床蚀变矿物学、矿物化学特征及矿床成因探讨[J].矿床地质, 2012, 31(5):1051-1066. doi: 10.3969/j.issn.0258-7106.2012.05.008
[16] 沈立军, 杜杨松, 王树星, 等.新疆西天山智博铁矿岩浆-热液成矿作用——来自安山岩矿物学的证据[J].地质与勘探, 2014, 50(2):321-331. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzykt201402012
[17] 蒋宗胜, 张作衡, 侯可军, 等.西天山查岗诺尔和智博铁矿区火山岩地球化学、锆石U-Pb年龄及地质意义[J].岩石学报, 2012, 28(7):2075-2088. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201207010
[18] 田敬全, 段士刚, 彭万林, 等.新疆西天山智博铁矿床火山岩和侵入岩岩石地球化学[J].矿床地质, 2015, 34(1):119-138. http://d.old.wanfangdata.com.cn/Periodical/kcdz201501007
[19] 马方彬, 杜杨松, 李大鹏, 等.西天山智博铁矿地球化学特征及地质意义[J].地质与勘探, 2016, 52(1):1-13. doi: 10.3969/j.issn.1001-1986.2016.01.001
[20] 王志华.新疆西天山智博铁矿床地质特征和成因研究[D].中国地质大学(北京)硕士学位论文, 2013.
http://cdmd.cnki.com.cn/Article/CDMD-11415-1013270341.htm [21] 高俊, 钱青, 龙灵利, 等.西天山的增生造山过程[J].地质通报, 2009, 28(12):1804-1816. doi: 10.3969/j.issn.1671-2552.2009.12.013 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20091212&flag=1
[22] Windley B F, Allen M B, Zhang C, et al.Paleozoic accretion and Cenozoic redeformation of the Chinese TienShan Range, central Asia[J].Geology, 1990.18(2):128-131. doi: 10.1130/0091-7613(1990)018<0128:PAACRO>2.3.CO;2
[23] Allen M B, Windley B F, Zhang C.Plalaeozoic collisional tectonics and magmatism of the Chinese Tien Shan, central Asia[J].Tectonophysics, 1992, 220:89-115. https://www.sciencedirect.com/science/article/pii/0040195193902259
[24] 左国朝, 张作衡, 王志良, 等.新疆西天山地区构造单元划分、底层系统及其构造演化[J].地质评论, 2008, 54(6):748-765.
[25] Xiao W J, Windley B, Huang B C, et al.End-Permian to mid-Triassic termination of the accretionary processes of the southern Alt aids:Implications for the geodynamic evolution, Phanerozoi ccontinental growth, and metallogeny of Central Asia[J].International Journal of Earth Sciences, 2009, 98(6):1189-1217. doi: 10.1007/s00531-008-0407-z
[26] 车自成, 刘良, 刘洪福, 等.论伊犁古裂谷[J].岩石学报, 1996, 12(3):478-490. doi: 10.3321/j.issn:1000-0569.1996.03.014
[27] 杨金中, 赵玉灵, 王永江, 等.新疆西天山大哈拉军山组的沉积环境及其与成矿的关系[J].地质与勘探, 2003, 39(2):1-5. http://d.old.wanfangdata.com.cn/Periodical/dzykt200302001
[28] 夏林圻, 张国伟, 夏祖春, 等.天山古生代洋盆开启、闭合时限的岩石学约束——来自震旦纪、石炭纪火山岩的证据[J].地质通报, 2002, 21(2):55-62. doi: 10.3969/j.issn.1671-2552.2002.02.002 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20020220&flag=1
[29] 姜常义, 吴文奎, 张学仁, 等.从岛弧向裂谷的变迁——来自阿吾拉勒地区火山岩的证据[J].矿物岩石学杂志, 1995, 14(4):289-300. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500805007
[30] 朱永峰, 张立飞, 古丽冰, 等.西天山石炭纪火山岩SHRIMP年代学及其微量元素地球化学研究[J].科学通报, 2005, 50(18):2004-2014. doi: 10.3321/j.issn:0023-074X.2005.18.014
[31] 李注苍, 李永军, 李景宏, 等.西天山阿吾拉勒一带大哈拉军山组火山岩地球化学特征及构造环境分析[J].新疆地质, 2006, 24(2):120-124. doi: 10.3969/j.issn.1000-8845.2006.02.005
[32] 邵铁全, 石莹, 靳红, 等.新疆西天山大哈拉军山组火山岩岩石化学特征及地质意义[J].新疆地质, 2006, 24(3):218-222. doi: 10.3969/j.issn.1000-8845.2006.03.002
[33] 刘静, 李永军, 王小刚, 等.西天山阿吾拉勒一带伊什基里克组火山岩地球化学特征及构造环境[J].新疆地质, 2006, 24(2):105-108. doi: 10.3969/j.issn.1000-8845.2006.02.002
[34] 龙灵利, 高俊, 钱青, 等.西天山伊犁地区石炭纪火山岩地球化学特征及构造环境[J].岩石学报, 2008, 24(4):699-710. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200804009
[35] 李永军, 李注仓, 周继兵, 等.西天山阿吾拉勒一带石炭系岩石地层单位厘定[J].岩石学报, 2009, 25(6):1332-1340. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200906005
[36] 李继磊, 钱青, 高俊, 等.西天山昭苏东南部阿登套地区大哈拉军山组火山岩及花岗岩侵入体的地球化学特征、时代和构造环境[J].岩石学报, 2010, 26(10):2913-2924. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201010004
[37] 朱志新, 李锦轶, 董连慧, 等.新疆西天山古生代侵入岩的地质特征及构造意义[J].地学前缘, 2011, 18(2):170-179. http://d.old.wanfangdata.com.cn/Periodical/dxqy201102015
[38] 冯金星, 石福晶, 汪帮耀, 等.西天山阿吾拉勒成矿带火山岩型铁矿[M].北京:地质出版社, 2010:1-117.
[39] 李小军.阿吾拉勒山主要矿产分布规律及成矿远景浅析[J].矿产与地质, 1994, 8(5):344-347. http://www.cnki.com.cn/Article/CJFDTotal-KCYD405.009.htm
[40] Le Bas M J, Le Maitre R W, Streckeisen A, et al.Chemical classification of volcanic rocks based on the total alkali-silica diagram[J].Journal of Petrology, 1986, 27(3):745-750. doi: 10.1093/petrology/27.3.745
[41] Wilson M.Igneous petrology[M].London:Oxford University Press, 1989:1-441.
[42] Atherton MP, Petford N.Generation of sodium-rich magmas from newly underplated basaltic crust[J].Nature, 1993, 362(6416):144-146. doi: 10.1038/362144a0
[43] Kelemen P B.Genesis of high Mg# andesites and the continental crust[J].Contributions to Mineralogy and Petrology, 1995, 120(1):1-19. doi: 10.1007/BF00311004
[44] Frietsch R.On the magmatic origin of iron ores of the Kiruna type[J].Economic Geology, 73(4): 478-485.
https://www.researchgate.net/publication/247861984_On_the_magmatic_origin_of_iron_ores_of_the_Kiruna_type [45] Sun S S, McDonough W F.Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[C]//Saunders A D, Norry M J.Magmatism in ocean basins.Geol.Soc.London.Spec.Publ., 1989, 42: 313-345.
[46] 袁家铮, 张峰, 殷纯嘏, 等.梅山铁矿矿浆成因的系统探讨[J].现代地质, 1997, 11(2):170-176. http://www.cnki.com.cn/Article/CJFDTotal-XDDZ702.006.htm
[47] Taylor S R, Mclennan S M.The continental crust:its composition and evolution[M].Oxford:Blackwell, 1985:312.
[48] Pearce J A.Trace element characteristics of lavas from destructive plate boundaries[C]//Thorpe R S.Andesits.Chichester: Wiley, 1982: 525-548.
https://www.researchgate.net/publication/304749002_Trace_Element_Characteristics_of_Lavas_from_Destructive_Plate_Boundaries [49] Rottura A, Bargossi G M, Caggianelli A, et al.Origin and significance of the Permian high-K calc-alkaline magmatism in the central-eastern Southern Alps, Italy[J].Lithos, 1998, 45(1/4):329-348. http://cn.bing.com/academic/profile?id=557c4890392bc7ff8b8ef5c4ca0c8765&encoded=0&v=paper_preview&mkt=zh-cn
[50] 夏林圻, 夏祖春, 徐学义, 等.天山石炭纪大火成岩省与地幔柱[J].地质通报, 2004, 21(2):55-62. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=200409162&flag=1
[51] Xia L Q, Xu X Y, Xia Z C, et al.Petrogenesis of Carboniferous rift related volcanic rocks in the Tianshan, Northwestern China[J].Geological Society of America Bulletin, 2004, 116:419-433. doi: 10.1130/B25243.1
[52] Gao J, Li M S, Xiao X C, et al.Paleozoic tectonic evolution of the Tianshan Orogen, northwestern China[J].Tectonophysics, 1998, 287(1/4):213-231. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-S0040-1951(98)80070-X/
[53] 钱青, 高俊, 熊贤明, 等.西天山昭苏北部石炭纪火山岩的岩石地球化学特征、成因及形成环境[J].岩石学报, 2006, 22(5):1307-1323. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200605020
[54] 张江苏, 李注苍.西天山阿吾拉勒一带大哈拉军山组火山岩构造环境分析[J].甘肃地质, 2006, 15(2):10-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gsdzxb200602003
[55] 安芳, 朱永峰.西北天山吐拉苏盆地火山岩SHRIMP年代学和微量元素地球化学研究[J].岩石学报, 2008, 24(12):2741-2748. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200812008
[56] 张学奎, 李注苍.西天山大哈拉军山组火山岩地球化学特征及地质意义[J].甘肃科技, 2008, 24(3):32-35. doi: 10.3969/j.issn.1000-0952.2008.03.014
[57] 夏换, 陈根文, 刘群, 等.西天山吐拉苏盆地大哈拉军山组火山岩地球化学特征及构造意义[J].大地构造与成矿学, 2011, 35(3):429-438. doi: 10.3969/j.issn.1001-1552.2011.03.013
[58] Leterrier J, Maury R C, Thonon P, et al.Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic seties[J].Earth and Planetary Science Letters, 1982, 59:139-154. doi: 10.1016/0012-821X(82)90122-4
[59] Sun X, Deng J, Yang Z R, et al.Using REE and isotope geochemistry to trace the origin of ore forming materials in Yixian fluorite deposits, China[J].Geochimica et Cosmochimica Acta, 2009, 73(13):A1293. http://adsabs.harvard.edu/abs/2009GeCAS..73R1293S
[60] Condie K C.High field strength element ratios in Archean basalts: A window to evolving sources of mantle plumes Lithos[J].2005, 79(3/4): 491-504.
https://www.researchgate.net/publication/222299011_High_field_strength_element_ratios_in_Archean_basalts_A_window_to_evolving_sources_of_mantle_plumes [61] Wood D A.The application of a Th ~Hf ~Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province[J].Earth and Planetary Science Letters, 1980, 50(1):11-30. https://www.sciencedirect.com/science/article/pii/0012821X80901168
[62] Hart S R.A large scale isotope anomaly in the Southern Hemisphere mantle[J].Nature, 1984, 309:753-757. doi: 10.1038/309753a0
[63] DaPaolo D J, Daley E E.Neodymium isotopes in basalts of the southwest basin and range and lithospheric thinning during continental extension[J].Chem.Geol., 2000, 169:157-185. doi: 10.1016/S0009-2541(00)00261-8
[64] Zartman R E, Doe B R.Plumbotectonics ~The model.Tectonophys, 1981, 75:135-162. doi: 10.1016/0040-1951(81)90213-4
[65] Zindler A, Hart S R.Chemical geodynamics[M].Annual Review of Earth and Planetary Sciences, 1986, 14:493-571. doi: 10.1146/annurev.ea.14.050186.002425
[66] Allegre C J, Lew in E, Dupre B.A.coherent crust-mantle model for the uranium-thorium-lead isot opic system[J].Chemi.Geol., 1988, 70:211-234. doi: 10.1016/0009-2541(88)90094-0
[67] Macdonald R, Hawkesworth C J, Health E.The Lesser Antilles volcanic chain:a study in arc magmatism[J].Earth Science Reviews, 2000, 49(1/4):1-76. http://cn.bing.com/academic/profile?id=90dba8834d67bf69eb711ee9d8b952cb&encoded=0&v=paper_preview&mkt=zh-cn
[68] 陈义贤, 陈文寄, 周新华, 等.辽西及邻区中生代火山岩年代学、地球化学和构造背景[M].北京:地震出版社, 1997:1-126.
[69] 邵济安, 张履桥, 牟堡垒.大兴安岭中生代伸展造山过程中的岩浆作用[J].地学前缘, 1999, 6(4):339-346. doi: 10.3321/j.issn:1005-2321.1999.04.017
[70] 朱炳泉.地球科学中同位素体系理论与应用[M].北京:科学出版社, 1998:1-235.
[71] 翟裕生, 石准立, 林新多, 等.鄂东大冶式铁矿成因的若干问题[J].地球科学, 1992, 18(3):239-251. http://www.cnki.com.cn/Article/CJFDTotal-DQKX198203024.htm
[72] Philpotts A R.Origin of certain iron-titanium oxide and apatite rocks[J].Economic Geology, 1967, 62:303-315. doi: 10.2113/gsecongeo.62.3.303
[73] 苏良赫.液相不混溶在岩石学及矿床学中的重要性[J].地球科学, 1984, (1):1-12. http://www.cnki.com.cn/Article/CJFDTotal-DQKX198401000.htm
[74] 张荣华, 刘隆隆, 陆成庆.长江中下游某些火山岩铁矿微量元素的地球化学[J].中国地质科学院院报, 1979, 1:83-103. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HY000002240067
[75] 侯通, 张招崇, 杜杨松.宁芜南段钟姑矿田的深部矿浆-热液系统[J].地学前缘, 2010, 1:186-194. http://d.old.wanfangdata.com.cn/Periodical/dxqy201001015
[76] Hou T, Zhang Z C, Kusky T.Gushan magnetite-apatite deposit in the Ningwu basin, Lower Yangtze River Valley, SE China:hydrothermal or Kiruna-type[J].Ore Geology Reviews, 2011, 43(1):333-346. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0228291949/
[77] Bookstrom A A.The magnetite deposits of El Romeral Chile[J].Economic Geology, 1977, 72:1101-1130. doi: 10.2113/gsecongeo.72.6.1101
[78] Panno S V, Hood W C.Volcanic stratigraphy of the Pilot Knob iron deposits Iron County, Missouri[J].Economic Geology, 1983, 78:972-982. doi: 10.2113/gsecongeo.78.5.972
[79] Hildebrand R S.Kiruna-type deposits:their origin and relationship to intermediate subvolcanic plutons in the Great Bear magmatic zone, Northwest Canada[J].Economic Geology, 1986, 81(3):640-659. doi: 10.2113/gsecongeo.81.3.640
[80] Frietsch R, Perdahl L A.REE in apatite and magnetite in Kiruna-type iron ores and some other iron ore types[J].Ore Geology Reviews, 1995, 9:489-510. doi: 10.1016/0169-1368(94)00015-G
① 新疆地质矿产勘查开发局第三地质大队.新疆和静县诺尔湖铁矿详查地质报告.2011.
-