Zircon U-Pb age and geochemical characteristics of Ordovician pluton in Geleaobao, Inner Mongolia
-
摘要:
内蒙古格勒敖包位于兴蒙造山带内,对该区奥陶纪岩浆岩的研究,有助于进一步认识该造山带早古生代的构造格局及其演化。正长花岗岩和斑状二长花岗岩样品LA-ICP-MS锆石年龄为441.6±3.7~454.9±4.6Ma,形成时代为奥陶纪。经地球化学分析,岩体为高钾钙碱性系列;铝饱和指数显示其为过铝质花岗岩。岩石富集大离子亲石元素(LILEs)Rb、Th、U、K,亏损Ba、Sr;富集高场强元素(HFSEs)La、Ce、Nd、Zr,亏损Nb、P、Ti;稀土元素总量为38.7×10-6~120.23×10-6,轻稀土元素较重稀土元素分异明显,分馏程度较高,表现出较弱的负Eu异常。综合区域地质资料,认为格勒敖包奥陶纪岩浆源区为上地壳物质的部分熔融,其形成环境为弧后盆地,在古亚洲洋向北俯冲之后经历了岛弧岩浆作用旋回,为弧后伸张阶段的产物。
Abstract:The Geleaobao area of Inner Mongolia is located in the Xingmeng orogenic belt. By studying the Ordovician magmatic rocks in this area, researchers can further understand the structure and evolution of the Early Paleozoic strata in this orogenic belt. The ages of the LA-ICP-MS zircons of syenite and mottled monzogranite samples studied in this work are 441.6±3.7Ma to 454.9±4.6Ma. The age of formation is Ordovician. Geochemical analysis shows that the pluton has high-K calc-alkaline characteristics. Aluminum saturation index shows that it is peraluminous granite. The characteristics of trace elements in rocks indicate that they are enriched in large ionic lithophilic elements (LILEs) Rb, Th, U, K, depleted in Ba, Sr; enriched in high field strength elements (HFSEs) La, Ce, Nd, Zr, and depleted in Nb, P, Ti. The total amount of rare earths in the rocks is 38.7×10 -6 to 120.23×10 -6, and the light rare earths exhibit obvious differences in heavier rare earths, with higher fractionation and weaker negative Eu anomalies. Based on regional geological data, it is believed that the source region of the Ordovician magma in the Geleaobao area is partially melted upper crustal materials, and the formation environment was a back-arc basin. After the subduction of the ancient Asian Ocean to the north, it experienced an island-arc magmatic process cycle, being product of extension stage.
-
Key words:
- Geleaobao /
- Ordovician /
- intrusive rock /
- geochemical characteristics /
- back-arc basin
-
-
表 1 格勒敖包地区岩体LA-ICP-MS锆石U-Th-Pb测年结果
Table 1. LA-ICP-MS zircon U-Th-Pb dating results of the Geleaobao granite pluton
测点编号 含量/10-6 Th/U 同位素比值 同位素年龄/Ma U Pb 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 粗中粒正长花岗岩(样品TW4072) 1 318 25 0.64 0.0737 0.0009 0.5665 0.0114 0.0557 0.0010 459 6 456 9 442 38 2 1022 70 0.18 0.0699 0.0009 0.5849 0.0100 0.0608 0.0008 435 5 468 8 631 29 3 518 36 0.16 0.0725 0.0009 0.5814 0.0105 0.0580 0.0008 451 5 465 8 531 32 4 725 51 0.16 0.0719 0.0009 0.5925 0.0111 0.0596 0.0009 448 5 472 9 591 33 5 567 39 0.22 0.0698 0.0008 0.5607 0.0100 0.0583 0.0008 435 5 452 8 540 32 6 276 20 0.30 0.0737 0.0009 0.5918 0.0120 0.0582 0.0010 458 6 472 10 539 38 7 440 32 0.18 0.0743 0.0009 0.5922 0.0114 0.0578 0.0009 462 6 472 9 524 35 8 363 27 0.58 0.0700 0.0008 0.5360 0.0100 0.0556 0.0009 436 5 436 8 436 36 9 399 30 0.44 0.0738 0.0009 0.5820 0.0112 0.0572 0.0009 459 6 466 9 499 34 10 218 17 0.59 0.0721 0.0009 0.5633 0.0136 0.0567 0.0012 449 5 454 11 478 48 11 804 54 0.13 0.0705 0.0008 0.5460 0.0092 0.0562 0.0008 439 5 442 7 460 30 12 505 37 0.31 0.0739 0.0010 0.5441 0.0101 0.0534 0.0008 460 6 441 8 348 33 13 301 22 0.39 0.0724 0.0009 0.5592 0.0117 0.0560 0.0010 451 6 451 9 453 40 14 151 11 0.46 0.0709 0.0008 0.5624 0.0154 0.0575 0.0014 442 5 453 12 511 55 15 409 31 0.53 0.0714 0.0009 0.5428 0.0102 0.0552 0.0009 444 5 440 8 421 35 16 516 41 0.68 0.0734 0.0009 0.5694 0.0103 0.0563 0.0008 457 6 458 8 463 32 18 702 50 0.25 0.0725 0.0009 0.5467 0.0096 0.0547 0.0008 451 6 443 8 400 31 19 516 38 0.54 0.0708 0.0008 0.5264 0.0095 0.0539 0.0008 441 5 429 8 367 34 20 353 26 0.53 0.0698 0.0008 0.5433 0.0103 0.0565 0.0009 435 5 441 8 472 37 21 415 30 0.30 0.0738 0.0009 0.5594 0.0105 0.0550 0.0008 459 6 451 8 410 34 23 207 16 0.50 0.0725 0.0009 0.5522 0.0142 0.0552 0.0013 451 6 446 11 421 51 24 246 18 0.47 0.0712 0.0009 0.5351 0.0122 0.0546 0.0011 443 5 435 10 397 45 25 476 33 0.15 0.0714 0.0009 0.5556 0.0101 0.0564 0.0008 445 5 449 8 468 33 26 893 61 0.12 0.0716 0.0009 0.5557 0.0095 0.0563 0.0008 446 5 449 8 465 30 27 458 34 0.28 0.0738 0.0010 0.5779 0.0115 0.0568 0.0009 459 6 463 9 482 34 斑状中粒黑云母二长花岗岩(样品TW1132) 3 659 47 0.22 0.0736 0.0009 0.5647 0.0098 0.0557 0.0008 458 6 455 8 440 31 4 660 50 0.42 0.0739 0.0009 0.5671 0.0099 0.0557 0.0008 460 6 456 8 439 31 5 885 60 0.16 0.0706 0.0008 0.5374 0.0090 0.0552 0.0007 440 5 437 7 421 30 6 819 60 0.34 0.0733 0.0009 0.5657 0.0095 0.0560 0.0008 456 5 455 8 453 30 7 673 47 0.24 0.0730 0.0009 0.5691 0.0100 0.0566 0.0008 454 6 457 8 476 31 9 464 33 0.19 0.0731 0.0009 0.5426 0.0096 0.0538 0.0008 455 6 440 8 365 32 10 183 15 0.52 0.0764 0.0010 0.5918 0.0148 0.0561 0.0012 474 6 472 12 457 48 11 2702 198 0.22 0.0755 0.0010 0.5679 0.0101 0.0546 0.0007 469 6 457 8 394 30 12 273 21 0.43 0.0770 0.0010 0.5694 0.0117 0.0538 0.0009 478 6 458 9 361 39 13 494 35 0.26 0.0726 0.0009 0.5572 0.0095 0.0557 0.0008 452 5 450 8 441 31 14 765 54 0.30 0.0729 0.0009 0.5751 0.0101 0.0571 0.0008 454 6 461 8 497 30 15 221 16 0.34 0.0718 0.0008 0.5698 0.0118 0.0576 0.0010 447 5 458 9 515 40 16 1128 89 0.80 0.0714 0.0009 0.5644 0.0094 0.0574 0.0008 444 5 454 8 507 29 17 140 11 0.53 0.0760 0.0009 0.5736 0.0144 0.0549 0.0012 472 6 460 12 407 51 18 832 58 0.28 0.0704 0.0008 0.5475 0.0095 0.0564 0.0008 439 5 443 8 469 32 19 653 47 0.37 0.0704 0.0009 0.5545 0.0111 0.0570 0.0009 438 5 448 9 493 35 21 505 37 0.20 0.0747 0.0009 0.5773 0.0102 0.0561 0.0008 464 6 463 8 457 31 22 746 55 0.42 0.0713 0.0008 0.5482 0.0093 0.0558 0.0008 444 5 444 7 445 30 23 363 27 0.28 0.0741 0.0009 0.5850 0.0111 0.0572 0.0009 461 6 468 9 501 34 25 735 51 0.15 0.0733 0.0009 0.5582 0.0095 0.0552 0.0007 456 6 450 8 422 30 26 448 37 0.86 0.0716 0.0009 0.5377 0.0095 0.0545 0.0008 446 5 437 8 392 33 27 822 60 0.26 0.0747 0.0009 0.5738 0.0097 0.0558 0.0008 464 6 460 8 442 30 29 683 51 0.30 0.0743 0.0010 0.5760 0.0102 0.0562 0.0008 462 6 462 8 462 31 30 595 42 0.22 0.0735 0.0009 0.5554 0.0097 0.0549 0.0008 457 6 449 8 406 31 表 2 格勒敖包岩体主量、微量和稀土元素特征
Table 2. Major, trace and rare earth element concentrations of the Geleaobao pluton
样品号 TW4072 TW1132 TW0260 TW0145 岩石名称 正长花岗岩 斑状黑云母 二长花岗岩 二长花岗岩 SiO2 78.74 73.42 72.96 73.73 TiO2 0.17 0.37 0.34 0.16 Al2O3 11.47 13.46 13.64 14.03 Fe2O3 0.71 0.21 0.72 0.83 FeO 0.12 2.45 1.56 0.52 MnO 0.014 0.057 0.06 0.039 MgO 0.16 0.64 0.75 0.38 CaO 0.22 1.77 1.24 0.6 Na2O 3.1 3.72 3.2 3.09 K2O 4.6 3.45 4.2 5.27 P2O5 0.046 0.12 0.12 0.21 烧失量 0.66 0.34 1.04 1.1 DI 96.6 84.62 87.03 92.73 SI 1.85 6.11 7.19 3.77 σ 1.66 1.69 1.82 2.27 A.R 4.86 2.78 2.98 3.67 A/CNK 1.095 1.03 1.131 1.181 Cs 1.8 13.2 10.4 13.2 Rb 60.4 273 199 273 Sr 550 99.6 109 99.6 Ba 102 180 206 180 Ga 23.4 14.4 14.6 14.4 Nb 14.9 6.88 7.42 6.88 Ta 1.15 1.58 1.15 1.58 Zr 441 64 118 64 Hf 12.4 2.46 3.84 2.46 Th 17.9 6.18 9.1 6.18 V 56.8 9.01 25.7 9.01 Cr 22.7 9.25 11.4 9.25 Co 12.3 1.06 3.58 1.06 Ni 15.7 3.99 7.56 3.99 Li 26 20 35.8 20 Sc 11.2 3.89 7.16 3.89 U 2.08 1.7 1.82 1.7 La 6.63 23.9 15.6 9.08 Ce 13 47.6 31.7 18.2 Pr 1.98 5.84 4.29 2.54 Nd 7.5 21.3 16.3 9.74 Sm 1.78 4.27 3.6 2.41 Eu 0.32 0.83 0.53 0.35 Gd 1.57 4.59 3.4 2.16 Tb 0.28 0.68 0.64 0.41 Dy 1.88 3.95 4.46 2.75 Ho 0.41 0.82 0.92 0.51 Er 1.24 2.49 2.66 1.4 Tm 0.26 0.41 0.44 0.23 Yb 1.6 3.08 3 1.52 Lu 0.25 0.47 0.46 0.24 Y 9.96 22.2 25.1 13.7 ∑REE 38.7 120.23 88 51.54 HREE 7.49 16.49 15.98 9.22 LREE 31.21 103.74 72.02 42.32 LR/HR 4.17 6.29 4.51 4.59 (La/Yb)N 2.97 5.57 3.73 4.28 注:主量元素含量单位为%,微量和稀土元素为10-6 -
[1] 刘家义.内蒙贺根山地区蛇绿岩套研究及构造意义[C]//中国地质科学院文集(1982中英文合订本), 1985: 2.
[2] 王树庆, 许继峰, 刘希军, 等.内蒙朝克山蛇绿岩地球化学:洋内弧后盆地的产物?[J].岩石学报, 2008, 24(12):2869-2879. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200812021
[3] 黄波, 付冬, 李树才, 等.内蒙古贺根山蛇绿岩形成时代及构造启示[J].岩石学报, 2016, 32(1):158-176. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201601020
[4] 徐备, 赵盼, 鲍庆中, 等.兴蒙造山带前中生代构造单元划分初探[J].岩石学报, 2014, 30(7):1841-1857. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201407001
[5] Xiao W J, Windley B F, Hao J, et al. Accretion leading to collision and the Permian Solonker Suture, Inner Mongolia, China:Termination of the Central Asian Orogenic Belt[J]. Tectonics, 2003, 22(6):1069-1090. http://cn.bing.com/academic/profile?id=4f70f4625c75e2c67f49e664df0bc8b5&encoded=0&v=paper_preview&mkt=zh-cn
[6] Li J Y. Permian Geodynamic Setting of Northeast China and Adjacent regions:Closure of the Paleo-Asian Ocean and dubduction of the Paleo-Pacific Plate[J]. Journal of Asian Earth Sciences, 2006, 26(3/4):207-224. http://cn.bing.com/academic/profile?id=e77fd6a5ce2d0c1b863e92f716eaa12f&encoded=0&v=paper_preview&mkt=zh-cn
[7] Jian P, Liu D Y, Kröner A, et al. Time scale of the early to midPaleozoic orogenic cycle of the longlived Central Asian Orogenic Belt, Inner Mongolia of China:implications for continental growth[J]. Lithos, 2008, 101(3/4):233-259. https://www.researchgate.net/publication/229097104_Time_scale_of_an_early_to_mid-Paleozoic_orogenic_cycle_of_the_long-lived_Central_Asian_Orogenic_Belt_Inner_Mongolia_of_China_Implications_for_continental_growth
[8] Xu B, Charvet J, Chen Y, et al. Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China):framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt[J]. Gondwana Research, 2013, 23(4):1342-1364. doi: 10.1016/j.gr.2012.05.015
[9] 杨泽黎, 王树庆, 胡晓佳, 等.内蒙古吉尔嘎郎图早古生代岩体成因——年代学、地球化学及Nd-Hf同位素制约[J].地质通报, 2017, 36(8):1369-1384. doi: 10.3969/j.issn.1671-2552.2017.08.007 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20170807&flag=1
[10] 赵利刚, 冉皞, 张庆红, 等.内蒙古阿巴嘎旗奥陶纪岩体的发现及地质意义[J].世界地质, 2012, 31(3):451-461. doi: 10.3969/j.issn.1004-5589.2012.03.002
[11] 李红英, 周志广, 李鹏举, 等.内蒙古东乌珠穆沁旗晚奥陶世辉长岩地球化学特征及其地质意义[J].地质论评, 2016, 62(2):300-316. http://d.old.wanfangdata.com.cn/Periodical/dzlp201602005
[12] Hoskin P W O, Black L P. Metamorphic zircon formation by solidstate recrystallization of protolith igneous ziron[J]. Metamorphic Geol., 2000, 18:423-439. http://www.oalib.com/references/19203084
[13] Hoskin P W O, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 2003, 53:27-62. doi: 10.2113/0530027
[14] Corfu F, Hanchar J M, Hoskin P W O, et al. Atlas of zircon textures[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1):469-500. http://d.old.wanfangdata.com.cn/NSTLQK/10.2113-0530469/
[15] Middlemost E A K. Naming materials in the magma/igneous rock system[J].Earth Science Reviews, 1994, 37(3/4):215-224. http://cn.bing.com/academic/profile?id=734bf86c098739b75858e5b7d1c062b4&encoded=0&v=paper_preview&mkt=zh-cn
[16] Wright J B. A simple alkalinity ratio and its application to questions of nonorogenic granite genesis[J]. Geological Magazine, 1969, 106(4):370-384. doi: 10.1017/S0016756800058222
[17] Peccerillo R, Taylor S R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contrib. Mineral. Petrol., 1976, 58:63-81. doi: 10.1007/BF00384745
[18] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5):635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
[19] Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J]. Geological Society of London Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19
[20] Bowden P. The geochemistry and mineralization of alkaline ring complexes in Africa (a review)[J]. Journal of African Earth Sciences, 1985, 3(1/2):17-39. http://cn.bing.com/academic/profile?id=3cc5e02b16ad50b923839fcf5ba3cbe1&encoded=0&v=paper_preview&mkt=zh-cn
[21] Eby G N. Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications[J]. Geology, 1992, 20:641-644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
[22] 张磊, 吕新彪, 刘阁, 等.兴蒙造山带东段大陆弧后A型花岗岩特征与成因[J].中国地质, 2013, 40(3):869-884. doi: 10.3969/j.issn.1000-3657.2013.03.018
[23] Eby G N, 王宾. A型花岗岩类的化学分类:岩石成因和构造意义[J].国外火山地质, 1994, (1):38-42. http://www.cnki.com.cn/Article/CJFDTOTAL-GWHD199401006.htm
[24] Batchelor R A, Bowden P. Petrogenetic interpretation of granitoid rock seriesusing multicationic parameters[J]. Chem. Geol., 1985(48):43-55. http://cn.bing.com/academic/profile?id=cf476bac1fef15bdde5a43220ec07ed8&encoded=0&v=paper_preview&mkt=zh-cn
[25] 潘桂棠, 陆松年, 肖庆辉, 等.中国大地构造阶段划分和演化[J].地学前缘, 2016, 23(6):1-23. http://d.old.wanfangdata.com.cn/Periodical/dxqy201606001
[26] Harris N B W, Pearce J A, Tindle A G. Geochemical characteristics of collision-zone magmatism[C]//Coward M P, Reis A C. Collision tectonics. Spec. Publ. Grol. Soc. Lond., 1986, 19: 67-81.
① 内蒙古自治区地质调查院.内蒙古 1∶5万阿格廷查干陶乐盖等六幅区域矿产地质调查报告.2018.
-