西藏冈底斯南缘汤白矿区早侏罗世含矿斑岩锆石U-Pb定年及其地质意义

白云, 郎兴海, 王旭辉, 崔志伟, 谢富伟, 邓煜霖, 李志军, 娄渝明, 韩鹏, 尹青, 王子正, 董树义, 张忠, 张金树, 姜楷. 西藏冈底斯南缘汤白矿区早侏罗世含矿斑岩锆石U-Pb定年及其地质意义[J]. 地质通报, 2019, 38(4): 509-521.
引用本文: 白云, 郎兴海, 王旭辉, 崔志伟, 谢富伟, 邓煜霖, 李志军, 娄渝明, 韩鹏, 尹青, 王子正, 董树义, 张忠, 张金树, 姜楷. 西藏冈底斯南缘汤白矿区早侏罗世含矿斑岩锆石U-Pb定年及其地质意义[J]. 地质通报, 2019, 38(4): 509-521.
BAI Yun, LANG Xinghai, WANG Xuhui, CUI Zhiwei, XIE Fuwei, DENG Yulin, LI Zhijun, LOU Yuming, HAN Peng, YIN Qing, WANG Zizheng, DONG Shuyi, ZHANG Zhong, ZHANG Jinshu, JIANG Kai. Zircon U-Pb geochronology and geological implication of Early Jurassic ore-bearing porphyry from the Tangbai area on the southern margin of Gangdise, Tibet[J]. Geological Bulletin of China, 2019, 38(4): 509-521.
Citation: BAI Yun, LANG Xinghai, WANG Xuhui, CUI Zhiwei, XIE Fuwei, DENG Yulin, LI Zhijun, LOU Yuming, HAN Peng, YIN Qing, WANG Zizheng, DONG Shuyi, ZHANG Zhong, ZHANG Jinshu, JIANG Kai. Zircon U-Pb geochronology and geological implication of Early Jurassic ore-bearing porphyry from the Tangbai area on the southern margin of Gangdise, Tibet[J]. Geological Bulletin of China, 2019, 38(4): 509-521.

西藏冈底斯南缘汤白矿区早侏罗世含矿斑岩锆石U-Pb定年及其地质意义

  • 基金项目:
    国家重点研发计划项目《冈底斯东段斑岩成矿系统深部预测评价与靶区优选》(编号:2018YFC0604105)、国家自然科学基金项目《西藏雄村斑岩型Cu-Au矿集区Ⅰ号矿体富CH4成矿流体演化过程研究》(批准号:41502079)和中国地质调查局项目《中国矿产地质与成矿规律综合集成和服务》(编号:DD20160346)
详细信息
    作者简介: 白云(1982-), 男, 在读博士生, 工程师, 从事矿床学、矿产普查与勘探的生产与研究工作。E-mail:85867005@qq.com
    通讯作者: 郎兴海(1982-), 男, 博士, 教授, 从事矿床学、矿产普查与勘探的教学和研究工作。E-mail:langxinghai@126.com
  • 中图分类号: P534.52;P597+.3

Zircon U-Pb geochronology and geological implication of Early Jurassic ore-bearing porphyry from the Tangbai area on the southern margin of Gangdise, Tibet

More Information
  • 汤白矿区位于西藏冈底斯斑岩铜矿带西段南缘,南侧紧邻日喀则弧前盆地。矿区由地表探矿工程控制3条赋存于早侏罗世角闪石英闪长斑岩中的主矿体(1号、2号和3号),在野外地质调查的基础上,对角闪石英闪长斑岩进行LA-ICP-MS锆石U-Pb定年和岩石地球化学测试。研究结果表明:①含矿斑岩的成岩年龄为183.3±1.2Ma,形成于早侏罗世;②含矿斑岩地球化学特征与大洋岛弧背景下的安山质岩石的地球化学性质一致,表明汤白矿区含矿斑岩形成于大洋岛弧环境;③西藏冈底斯斑岩铜矿带具有寻找俯冲期斑岩型矿床的巨大潜力,今后应加强该带俯冲期斑岩型矿床的勘查评价工作,特别是早-中侏罗世斑岩的成矿潜力评价。

  • 加载中
  • 图 1  汤白矿区地质简图

    Figure 1. 

    图 图版Ⅰ   

    Figure 图版Ⅰ. 

    图 2  汤白矿区角闪石英闪长斑岩锆石阴极发光图像

    Figure 2. 

    图 3  汤白矿区早侏罗世角闪石英闪长斑岩LA-ICP-MS锆石U-Pb谐和图(a)及206Pb/238U年龄加权平均值图(b)

    Figure 3. 

    图 4  汤白矿区角闪石英闪长斑岩Zr/TiO2-SiO2(a)[35]、SiO2-TFeO/MgO(b)[36]、Nb/Y-Zr/TiO2(c)[35]和A/CNK-A/NK(d)[37]图解

    Figure 4. 

    图 5  汤白矿区角闪石英闪长斑岩SiO2-Zr(a)和K2O-Na2O(b)图解[38]

    Figure 5. 

    图 6  汤白矿区角闪石英闪长斑岩球粒陨石标准化稀土元素配分模式图解(a)和微量元素原始地幔标准化图解(b)

    Figure 6. 

    图 7  汤白矿区角闪石英闪长斑岩微量元素构造环境判别图[42]

    Figure 7. 

    图 8  汤白矿区角闪石英闪长斑岩Th-La/Yb(a)和Sc/Ni-La/Yb图解[49]

    Figure 8. 

    表 1  汤白矿区角闪石英闪长斑岩LA-ICP-MS锆石U-Th-Pb同位素分析结果

    Table 1.  LA-ICP-MS zircon U-Th-Pb analytical data for hornblende quartz diorite porphyry in Tangbai ore district

    测试点 含量/10-6 Th/U 同位素比值 年龄/Ma
    Pb Th U 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 206Pb/238U ±1σ
    1 4.22 65.4 134 0.49 0.0869 0.0055 0.318 0.018 0.0286 0.00057 181.8 3.6
    2 4.66 69.9 156 0.45 0.0851 0.0058 0.305 0.019 0.0285 0.00066 180.9 4.1
    3 6.12 94.5 190 0.50 0.0774 0.0053 0.300 0.021 0.0290 0.00061 184.2 3.8
    4 3.25 40.9 104 0.40 0.1083 0.0055 0.399 0.016 0.0292 0.00058 185.6 3.6
    5 5.34 90.9 167 0.55 0.0806 0.0053 0.301 0.019 0.0283 0.00068 179.7 4.3
    6 6.03 93.6 182 0.51 0.0533 0.0051 0.217 0.022 0.0295 0.00128 187.4 8.0
    7 4.00 63.7 127 0.50 0.0907 0.0044 0.352 0.019 0.0287 0.00049 182.5 3.1
    8 4.16 74.2 127 0.58 0.0883 0.0070 0.326 0.020 0.0287 0.00066 182.4 4.1
    9 3.13 46.7 93.0 0.50 0.1003 0.0071 0.387 0.021 0.0300 0.00060 190.4 3.7
    10 6.74 144 204 0.70 0.0678 0.0031 0.259 0.011 0.0285 0.00042 180.9 2.6
    11 5.80 110 146 0.76 0.1160 0.0052 0.459 0.021 0.0291 0.00053 185.1 3.3
    12 4.09 71.8 125 0.57 0.0560 0.0064 0.209 0.020 0.0285 0.00101 181.5 6.3
    13 4.97 79.7 148 0.54 0.0681 0.0048 0.268 0.019 0.0292 0.00055 185.8 3.4
    14 15.0 521 378 1.38 0.0534 0.0022 0.207 0.008 0.0288 0.00038 183.2 2.4
    15 3.75 54.1 115 0.47 0.0685 0.0050 0.270 0.020 0.0286 0.00071 181.9 4.5
    16 8.06 219 232 0.94 0.0523 0.0025 0.203 0.010 0.0288 0.00044 183.0 2.8
    17 6.41 93.9 197 0.48 0.0557 0.0039 0.214 0.015 0.0286 0.00068 181.6 4.3
    18 5.10 82.9 152 0.55 0.0637 0.0046 0.253 0.020 0.0287 0.00062 182.7 3.9
    19 2.76 39.1 83.4 0.47 0.0789 0.0071 0.287 0.020 0.0286 0.00072 181.8 4.5
    20 5.28 85.1 157 0.54 0.0740 0.0046 0.279 0.015 0.0291 0.00058 184.7 3.6
    21 6.52 114 191 0.60 0.0558 0.0043 0.217 0.017 0.0286 0.00061 181.8 3.8
    22 3.25 54.7 97.7 0.56 0.0828 0.0051 0.321 0.020 0.0290 0.00062 184.0 3.9
    23 3.48 48.7 102 0.48 0.0789 0.0045 0.290 0.015 0.0288 0.00051 183.3 3.2
    24 4.73 72.8 142 0.51 0.0952 0.0064 0.354 0.021 0.0292 0.00054 185.7 3.4
    25 8.87 181 241 0.75 0.0554 0.0040 0.216 0.015 0.0289 0.00057 183.5 3.6
    26 6.12 107 171 0.63 0.0554 0.0034 0.217 0.014 0.0287 0.00050 182.6 3.1
    27 3.72 51.0 115 0.44 0.0887 0.0063 0.321 0.019 0.0284 0.00054 180.8 3.4
    28 2.91 38.9 87.8 0.44 0.0782 0.0041 0.305 0.017 0.0290 0.00063 184.1 3.9
    29 5.04 80.2 145 0.55 0.0576 0.0045 0.219 0.016 0.0286 0.00063 182.0 3.9
    30 4.76 113 133 0.85 0.0720 0.0033 0.279 0.014 0.0291 0.00051 184.9 3.2
    31 8.24 159 215 0.74 0.0562 0.0065 0.215 0.025 0.0283 0.00072 180.2 4.5
    32 4.31 63.4 127 0.50 0.0553 0.0048 0.212 0.017 0.0285 0.00068 181.4 4.3
    33 4.63 78.8 135 0.58 0.0529 0.0056 0.220 0.024 0.0293 0.00089 186.4 5.6
    34 3.07 39.0 93.4 0.42 0.0718 0.0038 0.275 0.015 0.0288 0.00050 183.3 3.1
    35 5.63 113 157 0.72 0.0567 0.0036 0.221 0.013 0.0289 0.00053 183.8 3.3
    36 4.80 70.5 132 0.54 0.0817 0.0044 0.320 0.016 0.0290 0.00047 184.3 2.9
    下载: 导出CSV

    表 2  汤白矿区角闪石英闪长斑岩主量和微量元素分析数据

    Table 2.  Major and trace elements analyses for hornblende quartz diorite porphyry in Tangbai ore district

    样品号 DND-2 DND-3 DND-4 DND-5 DND-6 DND-7 DND-8 DND-9 DND-10 DND-11
    SiO2 63.22 64.06 58.52 62.61 59.97 63.42 64.18 58.55 62.43 59.98
    TiO2 0.42 0.42 0.54 0.43 0.51 0.42 0.41 0.53 0.43 0.52
    Al2O3 16.31 16.15 18.03 16.36 17.58 16.28 16.01 18.08 16.36 17.70
    Fe2O3 2.38 2.69 2.64 2.16 2.69 2.39 2.67 2.65 2.16 2.72
    FeO 2.89 2.45 3.55 3.08 3.29 2.87 2.45 3.55 3.08 3.26
    MnO 0.18 0.16 0.20 0.18 0.20 0.18 0.16 0.20 0.17 0.20
    MgO 1.87 1.77 2.36 1.96 2.45 1.84 1.76 2.38 1.97 2.44
    CaO 5.18 4.87 5.05 4.66 5.07 5.12 4.84 5.08 4.65 5.06
    Na2O 3.11 3.15 3.36 3.32 3.32 3.09 3.13 3.38 3.31 3.31
    K2O 1.05 1.08 1.60 1.27 1.27 1.03 1.07 1.60 1.28 1.28
    P2O5 0.12 0.11 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12
    烧失量 2.59 2.40 3.37 3.21 2.95 2.69 2.52 3.22 3.38 2.85
    TFeO 5.04 4.87 5.92 5.02 5.71 5.01 4.86 5.93 5.02 5.70
    Mg# 53.55 56.30 54.32 53.20 57.06 53.40 56.18 54.43 53.35 57.18
    La 13.75 13.92 12.59 13.71 13.90 14.15 13.79 13.82 14.91 12.68
    Ce 24.73 24.73 22.77 23.99 24.93 25.19 24.11 24.74 26.46 22.53
    Pr 2.88 2.85 2.80 2.85 3.05 2.98 2.84 3.06 3.20 2.74
    Nd 14.08 13.99 13.92 13.77 14.97 14.04 14.06 15.15 15.33 13.73
    Sm 2.75 2.76 2.79 2.71 3.08 2.80 2.71 3.00 3.11 2.79
    Eu 0.95 0.96 1.01 0.98 1.13 0.98 0.95 1.12 1.07 0.99
    Gd 2.86 2.87 2.85 2.81 3.18 2.86 2.78 3.06 3.21 2.81
    Tb 0.39 0.38 0.40 0.37 0.45 0.38 0.37 0.43 0.44 0.40
    Dy 2.50 2.54 2.59 2.56 2.84 2.48 2.46 2.75 2.81 2.65
    Ho 0.49 0.48 0.51 0.49 0.57 0.50 0.48 0.56 0.54 0.51
    Er 1.49 1.55 1.64 1.54 1.83 1.54 1.50 1.70 1.70 1.61
    Tm 0.20 0.20 0.22 0.20 0.25 0.20 0.19 0.23 0.22 0.22
    Yb 1.69 1.72 1.94 1.71 2.03 1.70 1.60 2.00 1.87 1.88
    Y 13.89 13.85 14.28 14.04 16.01 14.12 13.64 15.33 15.81 14.76
    Lu 0.18 0.19 0.20 0.19 0.22 0.18 0.18 0.22 0.21 0.20
    Sc 10.14 9.75 15.10 10.57 13.47 9.09 9.37 15.29 10.18 13.84
    V 91.25 85.70 114.00 91.34 104.60 85.31 81.98 115.70 89.20 105.50
    Cr 12.57 9.91 11.02 10.13 7.84 12.77 10.32 11.74 10.78 8.72
    Co 8.27 11.16 11.14 8.71 11.17 8.05 11.25 10.64 7.73 11.13
    Ni 4.55 3.95 6.23 4.51 5.28 4.25 4.21 5.99 3.99 5.10
    Cu 14.27 17.12 19.96 14.16 12.78 13.63 17.83 19.58 12.20 13.03
    Zn 148.60 135.20 175.00 145.40 180.00 145.80 133.00 176.00 144.90 180.00
    Ga 15.96 15.16 18.89 16.47 17.77 15.56 15.28 18.58 14.88 17.32
    Rb 28.89 29.29 41.16 33.23 33.17 28.70 29.11 41.03 33.75 33.41
    Sr 442.98 417.04 471.47 437.78 452.88 443.26 419.29 471.15 436.54 453.88
    Zr 100.46 100.14 95.48 98.29 90.82 99.71 100.39 95.17 98.27 90.24
    Nb 5.81 6.02 6.35 5.65 6.08 5.19 5.45 6.08 5.15 5.79
    Cs 1.36 1.33 1.34 1.26 1.40 1.27 1.38 1.34 1.13 1.41
    Ba 398.38 388.17 704.55 483.15 500.38 391.06 384.68 707.50 478.32 496.54
    Hf 2.79 2.78 2.88 2.78 2.65 2.79 2.81 2.93 2.91 2.52
    Ta 0.62 0.57 0.62 0.65 0.81 0.52 0.56 0.57 0.59 0.62
    Pb 14.78 11.66 12.47 12.02 12.63 15.31 13.08 13.50 11.70 13.81
    Th 2.51 2.32 2.44 2.56 2.34 2.39 2.51 2.48 2.26 2.43
    U 5.76 5.93 5.74 5.76 6.19 7.02 6.46 7.02 6.57 6.37
    ΣREE 68.94 69.15 66.23 67.89 72.43 69.97 68.02 71.83 75.07 65.73
    ΣLREE 59.13 59.21 55.88 58.01 61.05 60.14 58.47 60.89 64.07 55.46
    ΣHREE 9.80 9.94 10.36 9.88 11.38 9.83 9.55 10.94 11.00 10.27
    (La/Yb)N 5.84 5.80 4.66 5.75 4.90 5.97 6.20 4.97 5.71 4.85
    δEu 1.02 1.04 1.08 1.07 1.09 1.05 1.05 1.12 1.02 1.07
      注:主量元素含量单位为%,微量和稀土元素含量为10-6
    下载: 导出CSV
  • [1]

    Cooke D R, Hollings P, Walshe J L. Giant porphyry deposits:Characteristics, distribution, and tectonic controls[J]. Economic Geology, 2005, 100:801-818. doi: 10.2113/gsecongeo.100.5.801

    [2]

    Singer D A, Berger V I, Menzie W D, et al. Porphyry copper deposit density[J]. Economic Geology, 2005, 100:491-514. doi: 10.2113/gsecongeo.100.3.491

    [3]

    Sillitoe R H. Porphyry copper systems[J]. Economic Geology, 2010, 105:3-41. doi: 10.2113/gsecongeo.105.1.3

    [4]

    侯增谦, 郑远川, 杨志明, 等.大陆碰撞成矿作用:Ⅰ.冈底斯新生代斑岩成矿系统[J].矿床地质, 2012, 31(4):647-670. doi: 10.3969/j.issn.0258-7106.2012.04.002

    [5]

    朱小三, 卢民杰, 程文景, 等.安第斯与冈底斯成矿带斑岩铜矿床矿物学和成矿斑岩地球化学特征对比[J].地质通报, 2017, 36(12):2143-2153. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20171207&flag=1

    [6]

    Kesler S E. Copper, molybdenum and gold abundances in porphyry deposit[J]. Eocnomic geology, 1973, 68:106-110. doi: 10.2113/gsecongeo.68.1.106

    [7]

    Taylor D, Leeuwen T V. Porphyry type deposit in southwest Asia[J]. Mining geology special issue, 1980, 8:159-174.

    [8]

    Hedebquist J W, Arriba A J, Reynolds T J. Evolution of an intrusion-centered hydrothermal system:Far Southeast-Lepanto porphtyry and epithermal Cu-Au deposits, Philippines[J]. Economic Geology, 1998, 93:373-404. doi: 10.2113/gsecongeo.93.4.373

    [9]

    Richards J P, Boyce A J, Pringle M S. Geologic evolution of the Escondida area, northern Chile:A model for spatial and temporal localization of porphyry Cu mineralization[J]. Economic Geology, 2001, 96:271-305. doi: 10.2113/gsecongeo.96.2.271

    [10]

    芮宗瑶, 黄崇轲, 齐国明, 等.中国斑岩铜(钼)矿床[M].北京:地质出版社, 1984:1-350.

    [11]

    侯增谦, 曲晓明, 黄卫, 等.冈底斯斑岩铜矿成矿带有望成为西藏第二条"玉龙"铜矿带[J].中国地质, 2001, 28(10):27-30. doi: 10.3969/j.issn.1000-3657.2001.10.005

    [12]

    曲晓明, 侯增谦, 黄卫.冈底斯斑岩铜矿带:西藏的第二条"玉龙"铜矿带?[J].矿床地质, 2001, 20(4):355-366. doi: 10.3969/j.issn.0258-7106.2001.04.009

    [13]

    Hou Z Q, Ma H W, Zaw K, et al. The Himalayan Yulong Porphyry Copper Belt:Product of Large-Scale Strike-Slip Faulting in Eastern Tibet[J]. Economic Geology, 2003, 98:125-145. http://cn.bing.com/academic/profile?id=8b6fd7b88c485097282d0af3128bd503&encoded=0&v=paper_preview&mkt=zh-cn

    [14]

    郑有业, 张刚阳, 许荣科, 等.西藏冈底斯朱诺斑岩铜矿床成岩成矿时代约束[J].科学通报, 2007, 52(21):2542-2548. doi: 10.3321/j.issn:0023-074x.2007.21.013

    [15]

    唐菊兴, 邓世林, 郑文宝, 等.西藏墨竹工卡县甲玛铜多金属矿床勘查模型[J].矿床地质, 2011, 30(2):179-196. doi: 10.3969/j.issn.0258-7106.2011.02.002

    [16]

    侯增谦, 曲晓明, 王淑贤, 等.西藏高原冈底斯斑岩铜矿带辉钼矿Re-Os年龄:成矿作用时限与动力学背景应用[J].中国科学(D辑), 2003, 33(7):609-618. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200307001

    [17]

    张刚阳, 郑有业, 龚福志, 等.西藏吉如:与陆陆碰撞过程相关的斑岩铜矿成岩成矿时代约束[J].岩石学报, 2008, 24(03):473-479. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200803007

    [18]

    Hou Z Q, Yang Z M, Qu X M, et al. The miocene gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen[J]. Ore Geology Reviews, 2009, 36(1/3):25-51. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7cfc354b83605a54eaba4fe240e156fd

    [19]

    唐菊兴, 陈毓川, 王登红, 等.西藏工布江达县沙让斑岩钼矿床辉钼矿铼-锇同位素年龄及其地质意义[J].地质学报, 2009, 83(5):698-704. doi: 10.3321/j.issn:0001-5717.2009.05.010

    [20]

    Zheng Y C, Fu Q, Hou Z Q, et al. Metallogeny of The northeastern gangdese Pb-Zn-Ag-Fe-Mo-W polymetallic belt in the Lhasa Terrane, southern Tibet[J]. Ore Geology Reviews, 2016, 70:510-532. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=52d447d8f5b3898769ebe7a0f95e9b8c

    [21]

    莫宣学, 董国臣, 赵志丹, 等.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息[J].高校地质学报, 2005, 11(3):281-290. doi: 10.3969/j.issn.1006-7493.2005.03.001

    [22]

    潘桂棠, 莫宣学, 侯增谦, 等.冈底斯造山带的时空结构及演化[J].岩石学报, 2006, 22(3):521-533. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603001

    [23]

    纪伟强, 吴福元, 锺孙霖, 等.西藏南部冈底斯岩基花岗岩时代与岩石成因[J].中国科学(D辑), 2009, 39:849-871. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200907002

    [24]

    Lang X H, Tang J X, Li Z J, et al. U-Pb and Re-Os geochronological evidence for the Jurassic porphyry metallogenic event of the Xiongcun district in the Gangdese porphyry copper belt, southern Tibet, PRC[J]. Journal of Asian Earth Sciences, 2014, 79:608-622. doi: 10.1016/j.jseaes.2013.08.009

    [25]

    Tang J X, Lang X H, Xie F W, et al. Geological characteristics and genesis of the Jurassic No. I porphyry Cu-Au deposit in the Xiongcun district, Gangdese porphyry copper belt, Tibet[J]. Ore Geology Reviews, 2015, 70:438-456. doi: 10.1016/j.oregeorev.2015.02.008

    [26]

    Nasdala L, Hofmeister W, Norberg N, et al. Zircon M257——a homogeneous natural reference material for the ion microprobe UPb analysis of zircon[J]. Geostandards and Geoanalytical Research, 2008, 32(3):247-265. doi: 10.1111/ggr.2008.32.issue-3

    [27]

    侯可军, 李延河, 田有荣. LA-MC-ICP-MS锆石微区原位UPb定年技术[J].矿床地质, 2009, 28(4):481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010

    [28]

    侯可军, 袁顺达.宁芜盆地火山-次火山岩的锆石U-Pb年龄、Hf同位素组成及其地质意义[J].岩石学报, 2010, 26(3):888-902. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201003020

    [29]

    Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257:34-43. doi: 10.1016/j.chemgeo.2008.08.004

    [30]

    Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the TransNorth China Orogen:U-Pb Dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010, 51(51):537-571. https://www.researchgate.net/profile/Keqing_Zong2/publication/268411794_Continental_and_Oceanic_Crust_Recycling-Induced_Melt_Peridotite_Interactions_in_the_Trans-North_China_Orogen_UPb_Dating_Hf_Isotopes_and_Trace_Elements_in_Zircons_from_Mantle_Xenoliths/links/551434ad0cf2eda0df306881/Continental-and-Oceanic-Crust-Recycling-Induced-Melt-Peridotite-Interactions-in-the-Trans-North-China-Orogen-UPb-Dating-Hf-Isotopes-and-Trace-Elements-in-Zircons-from-Mantle-Xenoliths.pdf

    [31]

    Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Science Bulletin, 2010, 55(15):1535-1546. doi: 10.1007/s11434-010-3052-4

    [32]

    Anderson T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2):59-79. http://cn.bing.com/academic/profile?id=500081c8e53f10c3181de6408e70a21d&encoded=0&v=paper_preview&mkt=zh-cn

    [33]

    Ludwig K R. Users Manualf or Isoplot 3.0:A geochronological Toolkit for Microsoft Excel[M]. Berkeley Geoch ronology Center, Special Publication, 2003:1-71.

    [34]

    Hoskin P W O, Black L P. Metamorphic zircon formation by solid-slate recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology, 2000, 18:423-439.

    [35]

    Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20(4):325-343. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-0009-2541(77)90057-2/

    [36]

    Miyashiro A. Volcanic rock series in island arcs and active continental margins[J]. American Journal of Science, 1974, 274:321-355. doi: 10.2475/ajs.274.4.321

    [37]

    Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5):635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    [38]

    Collins W J, Beams S D, White A J R, et al. Nature and origin of Atype granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy and Petrology, 1982, 80(2):189-200. doi: 10.1007/BF00374895

    [39]

    Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society London Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    [40]

    Pearce J A, Peate D W. Tectonic implications of the composition of volcanic ARC magmas[J]. Annual Review of Earth & Planetary Sciences, 1995, 23(1):251-285. http://cn.bing.com/academic/profile?id=d4f8f70d8b8c05f7062f8feabcdda5a5&encoded=0&v=paper_preview&mkt=zh-cn

    [41]

    Shinjo R, Chung S L, Kato Y, et al. Geochemical and Sr-Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and Ryukyu Arc:implications for the evolution of a young, intracontinental back arc basin[J]. Journal of Geophysical Research, 1999, 104:10591-10608. doi: 10.1029/1999JB900040

    [42]

    Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4):956-983. doi: 10.1093/petrology/25.4.956

    [43]

    韦栋梁, 夏斌, 周国庆, 等.西藏泽当英云闪长岩的地球化学和Sr-Nd同位素特征:特提斯洋内俯冲的新证据[J].中国科学(D辑), 2007, 37(4):442-450. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200704002

    [44]

    张宏飞, 徐旺春, 郭建秋, 等.冈底斯南缘变形花岗岩锆石U-Pb年龄和Hf同位素组成:新特提斯洋早侏罗世俯冲作用的证据[J].岩石学报, 2007, 23(6):1347-1353. doi: 10.3969/j.issn.1000-0569.2007.06.011

    [45]

    Guo L S, Liu Y L, Liu S W, et al. Petrogenesis of Early to Middle Jurassic granitoid rocks from the Gangdese belt, Southern Tibet:Implications for early history of the Neo-Tethys[J]. Lithos, 2013, 179(5):320-333. http://cn.bing.com/academic/profile?id=4bf98eb6c7f46c4a2a2f39d1d3564441&encoded=0&v=paper_preview&mkt=zh-cn

    [46]

    Meng Y K, Xu Z Q, Santosh M, et al. Late Triassic crustal growth in southern Tibet:Evidence from the Gangdese magmatic belt[J]. Gondwana Research, 2016, 37:449-464. doi: 10.1016/j.gr.2015.10.007

    [47]

    Kang Z Q, Xu J F, Wilde S A, et al. Geochronology and geochemistry of the Sangri Group volcanic rocks, Southern Lhasa Terrane:Implications for the early subduction history of the NeoTethys and Gangdese Magmatic Arc[J]. Lithos, 2014, 200/201(1):157-168. http://cn.bing.com/academic/profile?id=4a3ff9161371ffb3711d9e849018a0a9&encoded=0&v=paper_preview&mkt=zh-cn

    [48]

    黄丰, 许继峰, 陈建林, 等.早侏罗世叶巴组与桑日群火山岩:特提斯洋俯冲过程中的陆缘弧与洋内弧?[J].岩石学报, 2015, 31(7):2089-2100. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201507022

    [49]

    Bailey J C. Geochemical criteria for a refined tectonic discrimination of orogenic andesites[J]. Chemical Geology, 1981, 32(1/4):139-154.

    [50]

    Ji W Q, Wu F Y, Chung S L, et al. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the gangdese batholith, Southern Tibet[J]. Chemical Geology, 2009, 262(3/4):229-245. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-j.chemgeo.2009.01.020/

    [51]

    Arbaret L, Burg J P, Zeilinger G, et al. Pre-collisional anastomosing shear zones in the Kohistan arc, NW Pakistan[J]. Geological Society London Special Publications, 2000, 170(1):295-311. doi: 10.1144/GSL.SP.2000.170.01.16

    [52]

    Bignold S M, Treloar P J, Petford N. Changing sources of magma generation beneath intra-oceanic island arcs:An insight from the juvenile Kohistan island arc, Pakistan Himalaya[J]. Chemical Geology, 2006, 233(1):46-74. http://cn.bing.com/academic/profile?id=708a48e33cfdf232e52b92ad46a3e633&encoded=0&v=paper_preview&mkt=zh-cn

    [53]

    Bignold S M, Treloar P J. Northward subduction of the Indian plate beneath the Kohistan Island Arc, Pakistan Himalaya:New evidence from isotopic data[J]. Journal of the Geological Society London, 2003, 160(3):377-384. doi: 10.1144/0016-764902-068

    [54]

    Garrido C J, Bodinier J, Burg J, et al. Petrogenesis of mafic garnet granulite in the Lower crust of the Kohistan Paleo-arc complex (Northern Pakistan):Implications for intra-crustal differentiation of island arcs and generation of continental crust[J]. Journal of Petrology, 2006, 47(10):1873-1914. doi: 10.1093/petrology/egl030

    [55]

    Jagoutz O E, Burg J P, Hussain S, et al. Construction of the granitoid crust of an island arc Part I:Geochronological and geochemical constraints from the Plutonic Kohistan (NW Pakistan)[J]. Contributions to Mineralogy and Petrology, 2009, 158(6):739-755. doi: 10.1007/s00410-009-0408-3

    [56]

    Jagoutz O, Muntener O, Burg J P, et al. Lower continental crust formation through focused flow in Km-Scale Melt Conduits:The zoned ultramafic bodies of the Chilas complex in the Kohistan Island Arc (NW Pakistan)[J]. Earth and Planetary Science Letters, 2006, 242(3/4):320-342. http://cn.bing.com/academic/profile?id=afd66416f98e34f3cc1eae0fed39ed92&encoded=0&v=paper_preview&mkt=zh-cn

    [57]

    Jagoutz O, Muntener O, Ulmer P, et al. Petrology and mineral chemistry of lower crustal Intrusions:The Chilas Complex, Kohistan (NW Pakistan)[J]. Journal of Petrology, 2007, 48(10):1895-1953. doi: 10.1093/petrology/egm044

    [58]

    Dhuime B, Bosch D, Bodinier J L, et al. Multistage evolution of the Jijal ultramafic-mafic complex (Kohistan, N Pakistan):Implications for building the roots of island arcs[J]. Earth and Planetary Science Letters, 2007, 261(1/2):179-200. http://cn.bing.com/academic/profile?id=631911aa1e634b4cd8a457c68d331d51&encoded=0&v=paper_preview&mkt=zh-cn

    [59]

    Khan S D, Walker D J, Hall S A, et al. Did the Kohistan-Ladakh island arc collide first with India?[J]. Geological Society of America Bulletin, 2009, 121(3/4):366-384. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b907ca02525c0f0d1284237852766c00

    [60]

    Allégre C J, Courtillot V, Tapponnier P, et al. Structure and evolution of the Himalaya-Tibet Orogenic Belt[J]. Nature, 1984, 307(5946):17-22. doi: 10.1038/307017a0

    [61]

    Mahéo G, Bertrand H, Guillot S, et al. The South Ladakh Ophiolites (NW Himalaya, India):An intra-oceanic tholeiitic arc origin with implication for the closure of the Neo-Tethys[J]. Chemical Geology, 2004, 203(3):273-303. http://d.old.wanfangdata.com.cn/NSTLQK/10.1111-j.1365-2249.2011.04477.x/

    [62]

    Mcdermid I R C, Aitchison J C, Davis A M, et al. The Zedong terrane:a Late Jurassic intra-oceanic magmatic arc within the Yarlung-Tsangpo suture zone, southeastern Tibet[J]. Chemical Geology, 2002, 187(3/4):267-277. http://cn.bing.com/academic/profile?id=906c4b43c0049d9146b2bfe82eb94ba2&encoded=0&v=paper_preview&mkt=zh-cn

    [63]

    Aitchison J C, Zhu B D, Davis A M, et al. Remnants of a Cretaceous intra-oceanic subduction system within the YarlungZangbo Suture (Southern Tibet)[J]. Earth and Planetary Science Letters, 2000, 183(1):231-244.

    中国地质科学院矿产资源研究所.西藏自治区谢通门县雄村矿区铜矿勘探报告. 2012.

    成都理工大学.西藏日喀则市汤白铜矿地质勘查报告. 2005.

  • 加载中

(9)

(2)

计量
  • 文章访问数:  732
  • PDF下载数:  5
  • 施引文献:  0
出版历程
收稿日期:  2017-08-14
修回日期:  2017-10-20
刊出日期:  2019-04-15

目录