An analysis of metallogenic physical conditions of the Yuqia eclogite-type rutile deposit in the North Qaidam
-
摘要:
鱼卡榴辉岩型金红石矿床位于柴北缘超高压变质带西侧,是青藏高原发现的第一个超大型金红石矿床。为研究该矿床的控矿因素和成矿机制,在详细的野外地质调查和岩相学研究的基础上,利用电子探针对该矿床榴辉岩中的各特征矿物进行分析。研究表明,粗粒块状高钛榴辉岩的石榴子石保存了较完整的成分环带,从核部到边部,石榴子石的化学成分、矿物包裹体的种类和粒度都具有明显的分带性;细粒片麻状低钛榴辉岩的矿物颗粒较小,石榴子石的成分环带较差。鱼卡榴辉岩的p-T演化特征反映,它们经历了深俯冲阶段的升温升压到早期折返阶段的升温降压,再到之后的降温降压的顺时针演化轨迹。榴辉岩中进变质矿物组合和生长环带的保存说明,榴辉岩的形成经历了相对快速俯冲和折返的动力学过程,钛成矿作用时金红石很少发生转变。超高压变质前后为金红石最主要的成矿期。
Abstract:The Yuqia eclogite-type rutile deposit is located on the west side of the northern margin of the Qaidam Basin UHP metamorphic belt. And it is the first ultra-large rutile deposit found on the Tibetan Plateau. In order to study the ore-controlling factors and metallogenic mechanism of this deposit, the authors conducted detailed field geological survey and petrographic study. The characteristic minerals in the eclogite of the deposit were analyzed by electron microprobe analysis. It is shown that the garnets of coarse-grained high-Ti eclogite have preserved relatively complete compositional zoning; from the core to the edge, the garnet has a distinct zonality in chemical composition, type and granularity of mineral inclusions. However, the mineral particles in the fine and gneiss low-Ti eclogite are smaller, and the composition of the garnet is poor. Characteristics of p-T evolution of Yuqia eclogite show that it experienced a clockwise evolutionary trajectory from the temperature and pressure rise of the deep subduction stage to the temperature rise and pressure decrease of the early exhumation stage and then to the decrease of both temperature and pressure. The eclogite belongs to the metamorphic mineral assemblage with the preservation of the growth zone, which suggests that the formation of eclogites went through a dynamic process of relatively rapid subduction and reentry exhumation.
-
Key words:
- metallogenic conditions /
- rutile deposit /
- eclogite /
- Yuqia /
- North Qaidam
-
-
图 1 研究区位置图及地质简图(据参考文献[18]修改)
Figure 1.
图 2 鱼卡金红石矿区地质简图及P26剖面柱状图(据参考文献[18]修改)
Figure 2.
图 3 鱼卡榴辉岩石榴子石成分扫面和成分剖面(a、c为样品TC170HX2;b、d为样品TC155HX12;从黑色到红色,表示元素含量逐渐增加;矿物代号注释同表 1)
Figure 3.
图 4 鱼卡榴辉岩中特征矿物成分图解(矿物代号同表 6)
Figure 4.
图 5 鱼卡榴辉岩的P-T演化轨迹(底图据参考文献[46])
Figure 5.
表 1 鱼卡榴辉岩中石榴子石电子探针分析结果
Table 1. Electron microprobe analyses of garnets from Yuqia eclogites
表 2 鱼卡榴辉岩中绿辉石电子探针分析结果
Table 2. Electron microprobe analyses of omphacites from Yuqia eclogites
% 点号 SiO2 TiO2 AI2O3 FeO MnO MgO CaO Na2O 总计 Si Ti Cr Al Fe3+ Fe2+ Mg Ca Na Sum WEF Jd Ae TC170HX2-33 56.77 0.03 10.79 6.38 0.02 6.69 12.01 7.44 100.13 2.03 0.00 0.00 0.45 0.01 0.18 0.36 0.46 0.51 4.00 49.22 49.95 0.83 TC170HX2-34 55.89 0.10 11.17 6.67 0.01 6.43 11.25 7.68 99.27 2.02 0.00 0.00 0.47 0.04 0.16 0.35 0.43 0.54 4.01 46.66 48.99 4.35 TC170HX2-35 56.36 0.06 11.28 6.25 0.05 6.47 11.13 7.69 99.31 2.02 0.00 0.00 0.48 0.01 0.18 0.35 0.43 0.54 4.00 47.13 51.94 0.92 TC170HX2-36 55.99 0.08 9.84 5.52 0.06 8.23 13.66 6.47 100.15 2.00 0.00 0.01 0.41 0.02 0.14 0.44 0.52 0.45 4.01 55.25 42.51 2.25 TC170HX2-37 56.67 0.07 9.76 5.47 0.02 8.19 13.40 6.71 100.55 2.02 0.00 0.01 0.41 0.02 0.15 0.43 0.51 0.46 4.01 54.18 44.25 1.57 TC170HX2-38 56.04 0.07 9.49 5.68 0.03 8.13 13.56 6.62 99.62 2.02 0.00 0.00 0.40 0.04 0.14 0.44 0.52 0.46 4.01 54.29 42.22 3.49 TC155HX12-27 55.66 0.07 8.54 4.50 0.00 10.00 15.74 5.00 99.60 2.00 0.00 0.00 0.36 0.00 0.14 0.54 0.61 0.35 3.99 64.85 35.15 0.00 TC155HX12-28 55.73 0.07 8.94 4.25 0.04 9.70 15.70 5.22 99.73 2.00 0.00 0.00 0.38 0.00 0.13 0.52 0.60 0.36 3.99 63.39 36.61 0.00 TC155HX12-29 56.15 0.07 9.19 4.25 0.04 9.47 15.06 5.55 99.90 2.01 0.00 0.00 0.39 0.00 0.13 0.50 0.58 0.38 3.99 61.12 38.88 0.00 TC155HX12-30 56.24 0.11 8.87 4.20 0.05 9.68 15.58 5.33 100.08 2.01 0.00 0.00 0.37 0.00 0.13 0.51 0.60 0.37 3.99 62.68 37.32 0.00 TC155HX12-31 55.10 0.08 8.27 4.52 0.00 10.06 15.94 4.96 99.12 1.99 0.00 0.00 0.35 0.00 0.14 0.54 0.62 0.35 4.00 65.08 34.80 0.12 注:Sum为基于6个氧原子数计算的阳离子总数;Ae—霓石;Jd—硬玉;WEF—硅灰石+顽火辉石+铁顽火辉 表 3 鱼卡榴辉岩中斜长石电子探针分析结果
Table 3. Electron microprobe analyses of plagioclases from Yuqia eclogites
% 点号 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O 总计 Si Ti Al Fe3+ Fe2+ Mn Mg Ca Na Sum Ab An Or TC170HX2-39 70.04 0.00 19.37 0.33 0.00 0.00 0.24 11.60 101.64 3.02 0.00 0.98 0.00 0.01 0.00 0.00 0.01 0.97 5.00 98.83 1.11 0.06 TC170HX2-40 69.00 0.00 15.16 2.14 0.01 3.00 3.59 8.24 101.16 3.05 0.00 0.79 0.00 0.08 0.00 0.20 0.17 0.71 5.00 80.51 19.37 0.12 TC170HX2-41 70.98 0.00 19.08 0.23 0.02 0.03 0.21 11.34 101.97 3.06 0.00 0.97 0.00 0.01 0.00 0.00 0.01 0.95 5.00 98.85 0.99 0.17 TC155HX12-32 65.52 0.05 22.40 0.39 0.03 0.00 3.84 9.34 101.65 2.86 0.00 1.15 0.00 0.01 0.00 0.00 0.18 0.79 5.00 81.33 18.49 0.18 TC155HX12-33 64.43 0.00 22.74 0.42 0.01 0.00 4.01 9.42 101.05 2.82 0.00 1.17 0.00 0.02 0.00 0.00 0.19 0.80 5.00 80.82 19.02 0.16 注:Sum为基于6个氧原子数计算的阳离子总数;Ab—钠长石;An—钙长石;Or—正长石 表 4 鱼卡榴辉岩中角闪石电子探针分析结果
Table 4. Electron microprobe analyses of amphiboles from Yuqia eclogites
% 点号 SiO2 TiO2 AI2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 总计 Si Ti Al Fe Mn Mg Ca Na K Cr 总计 TC170HX12-42 47.65 0.74 8.79 10.90 0.10 14.01 11.16 2.24 0.19 0.05 95.82 7.01 0.08 1.52 1.34 0.01 3.07 1.76 0.64 0.04 0.01 15.48 TC170HX12-43 45.82 1.11 10.30 11.20 0.06 12.96 10.01 2.66 0.28 0.60 95.00 6.82 0.12 1.81 1.39 0.01 2.88 1.60 0.77 0.05 0.07 15.52 TC170HX12-44 48.09 0.27 9.00 12.87 0.03 12.50 10.70 2.18 0.07 0.01 95.72 7.11 0.03 1.57 1.59 0.00 2.76 1.70 0.62 0.01 0.00 15.39 TC155HX12-34 41.77 0.91 16.46 14.95 0.15 8.62 9.43 3.53 0.35 0.10 96.26 6.27 0.10 2.91 1.88 0.02 1.93 1.52 1.03 0.07 0.01 15.72 TC155HX12-35 41.81 0.91 15.79 16.36 0.13 8.16 9.35 3.18 0.72 0.04 96.44 6.31 0.10 2.81 2.06 0.02 1.84 1.51 0.93 0.14 0.00 15.72 TC155HX12-36 42.23 0.91 15.73 15.40 0.16 8.13 9.68 3.25 0.60 0.06 96.16 6.36 0.10 2.79 1.94 0.02 1.82 1.56 0.95 0.12 0.01 15.67 TC155HX12-37 41.78 0.83 13.95 17.45 0.17 8.03 10.14 2.93 0.50 0.54 96.29 6.37 0.09 2.51 2.23 0.02 1.83 1.66 0.87 0.10 0.06 15.73 TC155HX12-38 41.06 0.94 13.48 17.03 0.17 7.94 9.24 2.87 0.50 2.42 95.66 6.32 0.11 2.45 2.19 0.02 1.82 1.52 0.86 0.10 0.29 15.68 TC155HX12-39 50.37 0.25 9.74 8.33 0.02 14.76 9.94 2.65 0.36 0.07 96.47 7.20 0.03 1.64 1.00 0.00 3.15 1.52 0.73 0.07 0.01 15.35 TC155HX12-40 48.65 0.33 11.11 8.97 0.06 14.22 9.99 2.82 0.45 0.16 96.77 6.99 0.04 1.88 1.08 0.01 3.05 1.54 0.79 0.08 0.02 15.46 TC155HX12-41 49.19 0.34 10.93 8.75 0.04 14.30 9.88 2.88 0.43 0.10 96.84 7.04 0.04 1.84 1.05 0.01 3.05 1.52 0.80 0.08 0.01 15.43 TC155HX12-42 51.10 0.28 8.64 8.30 0.04 15.13 10.20 2.57 0.28 0.04 96.58 7.30 0.03 1.45 0.99 0.00 3.22 1.56 0.71 0.05 0.00 15.32 TC155HX12-43 46.78 0.42 12.72 9.91 0.08 12.55 9.89 2.98 0.53 0.08 95.94 6.82 0.05 2.19 1.21 0.01 2.73 1.55 0.84 0.10 0.01 15.50 注:Sum为基于6个氧原子数计算的阳离子总数 表 5 鱼卡榴辉岩中多硅白云母电子探针分析结果
Table 5. Electron microprobe analyses of phengites from Yuqia eclogites
% 点号 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 总计 Si Ti Cr Al Fe2+ Mn Mg Ca Na K Sum TC170HX2-45 53.33 0.63 26.24 2.77 0.00 3.42 0.05 0.52 9.29 0.02 96.28 3.49 0.03 0.00 2.03 0.15 0.00 0.33 0.00 0.07 0.78 6.88 TC170HX2-46 54.90 0.56 26.19 2.91 0.02 3.62 0.02 0.44 8.41 0.02 97.07 3.54 0.03 0.00 1.99 0.16 0.00 0.35 0.00 0.06 0.69 6.81 TC170HX2-47 53.56 0.55 26.25 3.07 0.01 3.55 0.02 0.46 9.08 0.02 96.57 3.50 0.03 0.00 2.02 0.17 0.00 0.35 0.00 0.06 0.76 6.87 TC170HX2-48 54.04 0.48 25.74 2.59 0.01 3.61 0.06 0.44 8.96 0.14 96.08 3.53 0.02 0.01 1.98 0.14 0.00 0.35 0.00 0.06 0.75 6.85 TC170HX2-49 52.73 0.55 26.27 3.08 0.02 3.23 0.03 0.52 8.79 0.26 95.47 3.48 0.03 0.01 2.04 0.17 0.00 0.32 0.00 0.07 0.74 6.86 TC170HX2-50 54.87 0.42 25.71 2.91 0.00 3.81 0.04 0.42 8.55 0.01 96.73 3.55 0.02 0.00 1.96 0.16 0.00 0.37 0.00 0.05 0.71 6.82 TC155HX12-44 53.03 0.59 29.01 1.73 0.01 3.36 0.00 0.62 8.50 0.11 96.96 3.41 0.03 0.01 2.20 0.09 0.00 0.32 0.00 0.08 0.70 6.84 TC155HX12-45 53.11 0.56 28.33 1.80 0.00 3.48 0.02 0.66 8.37 0.11 96.44 3.44 0.03 0.01 2.16 0.10 0.00 0.34 0.00 0.08 0.69 6.84 TC155HX12-46 52.87 0.61 28.56 1.86 0.00 3.39 0.02 0.71 8.25 0.07 96.34 3.42 0.03 0.00 2.18 0.10 0.00 0.33 0.00 0.09 0.68 6.84 TC155HX12-47 52.20 0.55 28.11 1.83 0.01 3.28 0.00 0.52 8.12 0.07 94.68 3.44 0.03 0.00 2.18 0.10 0.00 0.32 0.00 0.07 0.68 6.82 注:Sum为基于6个氧原子数计算的阳离子总数 表 6 鱼卡高钛榴辉岩和低钛榴辉岩中石榴子石环带对比
Table 6. The comparison of the garnet zoning between the high Ti and low Ti eclogites at Yuqia
样品 高钛榴辉岩 低钛榴辉岩 特征 分布较稀疏,但颗粒粗大,可占(25%~40%),呈他形,受退变影响较大,矿物包体较多 颗粒较细,数量可占一半以上,分布密集,较自形,与其他矿物界线清晰 阶段 前榴辉岩相、榴辉岩相和后榴辉岩相 前榴辉岩相和榴辉岩相 包裹体 包裹体较多,种类复杂,
粒径大;核部:角闪石、白云母、长石、金红石、石英
边部:很少金红石包裹体较少,颗粒细小;
核部:角闪石、石英、帘石类
边部:很少主量元素 组分:
Alm55.97~64.62Sps0.74~1.79Prp12.15~17.78Grs15.04~27.38;
分带:核部高Ca、Mn,低Mg;幔部高Fe、Mg,低Ca;
边部高Ca组分:
Alm48.70~54.58Sps0.35~5.95Prp11.27~24.37Grs22.88~34.38;
分带:核部和幔部高Ca、Mn,低Mg;边部高Mg,低Ca、Mn,Fe含量相对均一微量元素[6] MREE~HREE陡峭分布
HREE核边变化不明显,或略微降低,
边部HREE~10MREE~HREE平坦分布
从核到边,HREE逐步升高
核部HREE~10
边部HREE~100注:Prp—铝镁榴石;Sps—锰铝榴石;Grs—钙铝榴石;Alm—铁铝榴石 表 7 鱼卡榴辉岩中各阶段矿物
Table 7. The table of mineral formation stages of Yuqia eclogite
-
[1] Meinhold G. Rutile and its applications in earth sciences[J]. EarthScience Reviews, 2010, 102(1/2):1-28. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201208002
[2] 刘润泽, 李中, 陈正云, 等.新型工程金属钛的应用[J].钛工业进展, 1998, 1:3-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800578453
[3] 贾明, 李胜荣, 岳来群, 等.山西代县碾子沟金红石矿床地质特征及经济意义研究[J].地质与勘探, 2006, 42(6):42-46. doi: 10.3969/j.issn.0495-5331.2006.06.009
[4] Force E R. Geology of titanium-mineral deposits[J]. Immunology, 1991, 130(2):243-253.
[5] 王永开, 徐永利, 郑有业, 等.柴达木盆地北缘鱼卡-铁石观一带金红石矿床的发现及其地质意义[J].地质通报, 2014, 33(6):900-911. doi: 10.3969/j.issn.1671-2552.2014.06.013 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20140613&flag=1
[6] 陈鑫, 郑有业, 许荣科, 等.柴北缘超高压变质带折返过程对金红石成矿的制约:来自鱼卡和铁石观西地区石榴子石成分环带的证据[J].地球科学与环境学报, 2016, 38(2):143-159. doi: 10.3969/j.issn.1672-6561.2016.02.003
[7] Chen D L, Liu L, Sun Y, et al. Geochemistry and zircon U Pb dating and its implications of the Yukahe HP/UHP terrane, the North Qaidam, NW China[J]. Journal of Asian Earth Sciences, 2009, 35(3/4):259-272. http://cn.bing.com/academic/profile?id=a8cb0bf62f2995543e6aa2ac41cde9fc&encoded=0&v=paper_preview&mkt=zh-cn
[8] Song S G, Su L, Li X H, et al. Tracing the 850Ma continental flood basalts from a piece of subducted continental crust in the North Qaidam UHPM belt, NW China[J]. Precambrian Research, 2010, 183(4):805-816. doi: 10.1016/j.precamres.2010.09.008
[9] Zhang G B, Ellis D J, Christy A G, et al. UHP metamorphic evolution of coesite-bearing eclogite from the Yuka terrane, North Qaidam UHPM belt, NW China[J]. European Journal of Mineralogy, 2009, 21(6):1287-1300. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=add2a64f44e315b009861000d6183996
[10] Ren Y F, Chen D L, Kelsey D E, et al. Petrology and Geochemistry of the lawsonite (pseudomorph)-bearing eclogite in Yuka terrane, North Qaidam UHPM belt:An eclogite facies metamorphosed oceanic slice[J]. Gondwana Research, 2016, 42:220-242.
[11] Zhang L, Chen R X, Zheng Y F, et al. Whole-rock and zircon geochemical distinction between oceanic-and continental-type eclogites in the North Qaidam orogen, northern Tibet[J]. Gondwana Research, 2016, 44:67-88.
[12] 杨经绥, 张建新, 孟繁聪, 等.中国西部柴北缘-阿尔金的超高压变质榴辉岩及其原岩性质探讨[J].地学前缘, 2003, 10(3):291-314. doi: 10.3321/j.issn:1005-2321.2003.03.026
[13] 王惠初, 袁桂邦, 辛后田, 等.柴达木盆地北缘鱼卡河岩群的地质特征和时代[J].地质通报, 2004, 23(4):314-321. doi: 10.3969/j.issn.1671-2552.2004.04.003 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20040463&flag=1
[14] 张建新, 孟繁聪, 杨经绥.柴北缘西段榴辉岩相的变质泥质岩:榴辉岩与围岩"原地"关系的证据[J].中国科学:地球科学, 2004, 34(9):825-834. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200409005
[15] 张建新, 孟繁聪, 杨经绥.柴北缘鱼卡榴辉岩的p-T演化历史[J].岩石矿物学杂志, 2005, 24(4):245-254. doi: 10.3969/j.issn.1000-6524.2005.04.001
[16] 陈丹玲, 孙勇, 刘良, 等.柴北缘鱼卡河榴辉岩的超高压变质年龄:锆石LA-ICP-MS微区定年[J].中国科学:地球科学, 2007, 37(S1):279-287. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2007S1029.htm
[17] 陈丹玲, 孙勇, 刘良.柴北缘鱼卡河榴辉岩围岩的变质时代及其地质意义[J].地学前缘, 2007, 14(1):108-116. doi: 10.3321/j.issn:1005-2321.2007.01.010
[18] 陈鑫, 郑有业, 许荣科, 等.柴北缘鱼卡榴辉岩型金红石矿床金红石矿物学、元素地球化学及成因[J].岩石学报, 2018, 34(6):1685-1703. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201806009
[19] Song S G, Niu Y L, Su L, et al. Continental orogenesis from ocean subduction, continent collision/subduction, to orogen collapse, and orogen recycling:The example of the North Qaidam UHPM belt, NW China[J]. Earth-Science Reviews, 2014, 129(1):59-84. http://cn.bing.com/academic/profile?id=8276405c6eafee1767bae93afee3e25c&encoded=0&v=paper_preview&mkt=zh-cn
[20] 张贵宾, 张立飞, 宋述光.柴北缘超高压变质带:从大洋到大陆的深俯冲过程[J].高校地质学报, 2012, 18(1):28-40. doi: 10.3969/j.issn.1006-7493.2012.01.003
[21] 张贵宾, 张立飞, 宁远煜, 等.柴北缘超高压变质带的冷却历史:来自副片麻岩中锆石、金红石的U-Pb年代学和温度信息[J].岩石学报, 2014, 30(10):2835-2842. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201410004
[22] 宋述光, 牛耀龄, 张立飞, 等.大陆造山运动:从大洋俯冲到大陆俯冲、碰撞、折返的时限——以北祁连山、柴北缘为例[J].岩石学报, 2009, 25(9):39-49. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200909003
[23] 宋述光, 张贵宾, 张聪, 等.大洋俯冲和大陆碰撞的动力学过程:北祁连-柴北缘高压-超高压变质带的岩石学制约[J].科学通报, 2013, 58(23):2240-2245. http://www.cnki.com.cn/Article/CJFDTotal-KXTB201323001.htm
[24] 宋述光, 王梦珏, 王潮, 等.大陆造山带碰撞-俯冲-折返-垮塌过程的岩浆作用及大陆地壳净生长[J].中国科学:地球科学, 2015, 5(7):916-940. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201507003
[25] 张立飞, 吕增, 张贵宾, 等.大洋型超高压变质带的地质特征及其研究意义:以西南天山、柴北缘超高压变质带为例[J].科学通报, 2008, 53(18):2166-2175. doi: 10.3321/j.issn:0023-074X.2008.18.003
[26] 杨经绥, 宋述光, 许志琴, 等.柴达木盆地北缘早古生代高压-超高压变质带中发现典型超高压矿物——柯石英[J].地质学报, 2001, 75(2):175-179. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200102005
[27] Song S G, Yang J S, Xu Z Q, et al. Metamorphic evolution of the coesite-bearing ultrahigh-pressure terrane in the North Qaidam, Northern Tibet, NW China[J]. Journal of Metamorphic Geology, 2003, 21(6):631-644. doi: 10.1046/j.1525-1314.2003.00469.x
[28] Song S G, Zhang L F, Niu Y L, et al. Geochronology of diamondbearing zircons from garnet peridotite in the North Qaidam UHPM belt, Northern Tibetan Plateau:A record of complex histories from oceanic lithosphere subduction to continental collision[J]. Earth & Planetary Science Letters, 2005, 234(1/2):99-118.
[29] Zhang J X, Meng F C. Coesite in eclogite from the North Qaidam Mountains and its implications[J]. Science Bulletin, 2009, 54(6):1105-1110. doi: 10.1007/s11434-009-0074-x
[30] Zhang J X, Mattinson C G, Yu S Y. U-Pb zircon geochronology of coesite-bearing eclogites from the southern Dulan area of the North Qaidam UHP terrane, northwestern China:spatially and temporally extensive UHP metamorphism during continental subduction[J]. Journal of Metamorphic Geology, 2010, 28(9):955-978. doi: 10.1111/jmg.2010.28.issue-9
[31] 林成贵, 许荣科, 郑有业, 等.柴北缘鱼卡榴辉岩型金红石矿地质特征及其原岩性质探讨[J].西北地质, 2017, 50(2):142-155. doi: 10.3969/j.issn.1009-6248.2017.02.016
[32] Coleman R G, Lee D E, Beatty L B, et al. Eclogites and Eclogites:Their Differences and Similarities[J]. Geological Society of America Bulletin, 1965, 76(5):483-508. doi: 10.1130/0016-7606(1965)76[483:EAETDA]2.0.CO;2
[33] Morimoto N. Nomenclature of Pyroxenes[J]. Mineralogy & Petrology, 1988, 39(1):55-76.
[34] Morimoto N. Nomenclature of Pyroxenes[J]. Mineralogy & Petrology, 1988, 39(1):55-76.
[35] Leake B E, Woolley A R, Arps C E S, et al. Nomenclature of amphiboles; Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names[J]. The Canadian Mineralogist, 1997, 35:219-247. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1180/minmag.1997.061.405.13
[36] 魏春景, 朱文萍.多硅白云母地质压力计的研究进展[J].地质通报, 2007, 26(9):1123-1130. doi: 10.3969/j.issn.1671-2552.2007.09.014 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=200709187&flag=1
[37] 朱文萍, 魏春景.多硅白云母地质压力计的热力学模拟[J].中国科学:地球科学, 2007, 37(8):1014-1019. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200708003
[38] 陈丹玲, 孙勇, 刘良, 等.柴北缘鱼卡河榴辉岩的变质演化——石榴石成分环带及矿物反应结构的证据[J].岩石学报, 2005, 21(4):1039-1048. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200504002
[39] 张建新, 于胜尧, 孟繁聪.柴达木北缘鱼卡-落凤坡榴辉岩-片麻岩单元的变质变形演化[J].地质通报, 2008, 27(9):1468-1474. doi: 10.3969/j.issn.1671-2552.2008.09.009 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20080909&flag=1
[40] 黄俊玮, 王守敬, 李洪潮, 等.某榴辉岩型金红石矿粗选试验研究[J].非金属矿, 2017, (1):46-49. doi: 10.3969/j.issn.1000-8098.2017.01.015
[41] 孙晓华, 霸慧文, 赵玉卿, 等.榴辉岩型金红石矿综合利用途径研究[J].化工矿物与加工, 2016, (8):37-39. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgkwyjg201608010
[42] Zhang L, Chen R X, Zheng Y F, et al. The tectonic transition from oceanic subduction to continental subduction:Zirconological constraints from two types of eclogites in the North Qaidam orogen, northern Tibet[J]. Lithos, 2016, 244:122-139. doi: 10.1016/j.lithos.2015.12.003
[43] Lombardo B, Rolfo F, Compagnoni R. Glaucophane and barroisite eclogites from the Upper Kaghan nappe:implications for the metamorphic history of the NW Himalaya[J]. Geological Society London Special Publications, 2000, 170(1):411-430. doi: 10.1144/GSL.SP.2000.170.01.22
[44] 刘景波, 国连杰, 吴颍.豫南-鄂北大别山北部高压角闪石榴辉岩的研究[J].地质科学, 1997, 32(4):409-422. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700065843
[45] 陈意, 叶凯, 吴春明.榴辉岩常用温压计在应用中应注意的问题[J].岩石学报, 2005, 21(4):1067-1080. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200504005
[46] Green T H, Hellman P L. Fe Mg partitioning between coexisting garnet and phengite at high pressure, and comments on a garnetphengite geothermometer[J]. Lithos, 1982, 15(4):253-266. doi: 10.1016/0024-4937(82)90017-2
[47] Powell R. Regression diagnostics and robust regression in geothermometer/geobarometer calibration:the garnetclinopyroxene geothermometer revisited[J]. Journal of Metamorphic Geology, 1985, 3(3):231-243. doi: 10.1111/jmg.1985.3.issue-3
[48] Ravna E K. The garnet-clinopyroxene Fe2+-Mg geothermometer:An updated calibration[J]. Journal of Metamorphic Geology, 2000, 18(2):211-219. doi: 10.1046/j.1525-1314.2000.00247.x
[49] Chen D L, Liu L, Sun Y, et al. Felsic veins within UHP eclogite at xitieshan in North Qaidam, NW China:Partial melting during exhumation[J]. Lithos, 2012, 136(4):187-200. http://cn.bing.com/academic/profile?id=f89c7aab6693dfbb5c89eb44f020f361&encoded=0&v=paper_preview&mkt=zh-cn
[50] Nakamura D, Banno S. Thermodynamic modelling of sodic pyroxene solid-solution and its application in a garnet-omphacitekyanite-coesite geothermobarometer for UHP metamorphic rocks[J]. Contributions to Mineralogy and Petrology, 1997, 130(1):93-102. doi: 10.1007/s004100050352
[51] Ravna E J K, Terry M P. Geothermobarometry of UHP and HP eclogites and schists-an evaluation of equilibria among garnetclinopyroxene-kyanite-phengite-coesite/quartz[J]. Journal of Metamorphic Geology, 2004, 22(6):579-592. doi: 10.1111/jmg.2004.22.issue-6
[52] Graham C M, Powell R. A garnet hornblende geothermometer:calibration, testing, and application to the Pelona Schist, Southern California[J]. Journal of Metamorphic Geology, 2010, 2(1):13-31. http://d.old.wanfangdata.com.cn/NSTLQK/10.1111-j.1525-1314.1984.tb00282.x/
[53] Carswell D A, O'Brien P J, Wilson R N, et al. Thermobarometry of phengite-bearing eclogites in the Dabie Mountains of central China[J]. Journal of Metamorphic Geology, 1997, 15(2):239-252. doi: 10.1111/j.1525-1314.1997.00014.x
[54] Holland T, Blundy J. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry[J]. Contributions to Mineralogy and Petrology, 1994, 116(4):433-447. doi: 10.1007/BF00310910
[55] Massonne H J, Schreyer W. Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite, and quartz[J]. Contributions to Mineralogy and Petrology, 1987, 96(2):212-224. doi: 10.1007/BF00375235
[56] Kohn M J. Two new geobarometers for garnet amphibolites, with applications to southeastern Vermont[J]. American Mineralogist, 1990, 75(1):89-96. http://cn.bing.com/academic/profile?id=7196c7af1855d25f9b457559cbe9377e&encoded=0&v=paper_preview&mkt=zh-cn
[57] Zhang C, Zhang L F, Roermund H V, et al. Petrology and SHRIMP U-Pb dating of Xitieshan eclogite, North Qaidam UHP metamorphic belt, NW China[J]. Journal of Asian Earth Sciences, 2011, 42(4):752-767. doi: 10.1016/j.jseaes.2011.04.002
[58] Liou J G, Tsujimori T, Zhang R Y, et al. Global UHP Metamorphism and Continental Subduction/Collision:The Himalayan Model[J]. International Geology Review, 2004, 46(1):1-27. doi: 10.2747/0020-6814.46.1.1
[59] Zhang J X, Yang J S, Mattinson C G, et al. Two contrasting eclogite cooling histories, North Qaidam HP/UHP terrane, western China:Petrological and isotopic constraints[J]. Lithos, 2005, 84(1/2):51-76. http://cn.bing.com/academic/profile?id=28a4efcea25300af9a595cfea5b7eb14&encoded=0&v=paper_preview&mkt=zh-cn
[60] Zhang C, Zhang L F, Bader T, et al. Geochemistry and trace element behaviors of eclogite during its exhumation in the Xitieshan terrane, North Qaidam UHP belt, NW China[J]. Journal of Asian Earth Sciences, 2013, 63(sup1):81-97. http://cn.bing.com/academic/profile?id=4d19757be9b40ddccca310f98f8d2bd7&encoded=0&v=paper_preview&mkt=zh-cn
[61] 张聪, 田作林, 张立飞, 等.柴北缘锡铁山两类榴辉岩的退变质过程及其对俯冲带折返机制的制约[J].地质通报, 2013, 32(12):2044-2054. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20131221&flag=1
[62] 陈鑫, 许荣科, 郑有业, 等.青海柴北缘UHP变质带铁石观西榴辉岩峰期温度的确定及其地质意义[J].地质通报, 2015, 34(12):2292-2301. doi: 10.3969/j.issn.1671-2552.2015.12.015 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20151215&flag=1
[63] 宋述光, 张立飞.榴辉岩的两种变质演化轨迹和俯冲大陆地壳的差异折返——以柴北缘都兰超高压地体为例[J].高校地质学报, 2007, 13(3):515-525. doi: 10.3969/j.issn.1006-7493.2007.03.020
-