河北围场御道口盆地流纹岩锆石U-Pb年龄、地球化学特征及其地质意义

巫建华, 宋凯, 牛子良, 郭恒飞, 刘帅. 河北围场御道口盆地流纹岩锆石U-Pb年龄、地球化学特征及其地质意义[J]. 地质通报, 2019, 38(7): 1191-1205.
引用本文: 巫建华, 宋凯, 牛子良, 郭恒飞, 刘帅. 河北围场御道口盆地流纹岩锆石U-Pb年龄、地球化学特征及其地质意义[J]. 地质通报, 2019, 38(7): 1191-1205.
WU Jianhua, SONG Kai, NIU Ziliang, GUO Hengfei, LIU Shuai. ZirconU-Pb age and geochemical characteristics of the rhyolite of the Yudaokou basin in Weichang, Hebei Province, and their geological implications[J]. Geological Bulletin of China, 2019, 38(7): 1191-1205.
Citation: WU Jianhua, SONG Kai, NIU Ziliang, GUO Hengfei, LIU Shuai. ZirconU-Pb age and geochemical characteristics of the rhyolite of the Yudaokou basin in Weichang, Hebei Province, and their geological implications[J]. Geological Bulletin of China, 2019, 38(7): 1191-1205.

河北围场御道口盆地流纹岩锆石U-Pb年龄、地球化学特征及其地质意义

  • 基金项目:
    国家自然科学基金项目《沽源-红山子铀成矿带流纹岩-粗面岩组合的成因及其与铀成矿的关系》(批准号:41372071)和中国核工业集团公司项目《中国中—新生代铀成矿作用研究》(编号:中核地计[2008]74号)
详细信息
    作者简介: 巫建华(1960-), 男, 博士, 教授, 从事地质学科研与教学工作与火山地质、铀矿地质研究。E-mail:jhwu@ecit.cn
  • 中图分类号: P588.14+1;P597+.3

ZirconU-Pb age and geochemical characteristics of the rhyolite of the Yudaokou basin in Weichang, Hebei Province, and their geological implications

  • 对河北省围场县御道口盆地流纹岩进行SHRIMP锆石U-Pb定年,结果表明,盆地内流纹岩的锆石206Pb/238U年龄加权平均值为155.2±2.0Ma,属于晚侏罗世早期岩浆活动的产物,与辽源地块新民组和燕山陆內造山带髫髻山组的地质时代一致。流纹岩分为灰白色流纹岩和肉红色流纹岩2种,均具有较高的SiO2、K2O、Al2O3含量和低的CaO、MgO含量,属高钾钙碱性系列,肉红色流纹岩的K2O/Na2O和Fe2O3/FeO值略高于灰白色流纹岩。流纹岩的稀土元素总量较高,轻、重稀土元素分馏明显,负Eu异常明显,具右倾轻稀土元素富集型稀土元素配分曲线特征;富集大离子亲石元素Rb、Th、U、Ga、Y和高场强元素Zr、Hf、Nb、Ta,亏损大离子亲石元素Ba、Sr,具有A2型花岗岩和低Sr-Ba流纹岩的微量元素特征,具有较高的(87Sr/86Sr)i值(0.708606~0.711171)、较低的εNdt)值(-9.78~-7.11)、相对年轻的TDM2(1520~1737Ma)和较低的(206Pb/204Pb)t、(207Pb/204Pb)t、(208Pb/204Pb)t值,在εNdt)-(87Sr/86Sr)i图解上投影点位于下地壳和亏损地幔之间,在(207Pb/204Pb)t-(206Pb/204Pb)t和(208Pb/204Pb)t-(206Pb/204Pb)t图解上投影点位于下地壳和地幔之间,指示流纹岩可能是DMM型(亏损型)地幔岩浆、EMⅠ富集地幔岩浆和少量古老下地壳物质混合形成的年轻下地壳部分熔融的产物。御道口盆地流纹岩的锶-钕-铅同位素特征与内蒙古基底隆起带的长英质火山-侵入岩基本一致,也与燕山陆內造山带的长英质火山-侵入岩相似,但不同于辽源地块的长英质火山-侵入岩。

  • 加载中
  • 图 1  河北围场御道口盆地大地构造位置(a)[3]及地质简图(b)

    Figure 1. 

    图 2  御道口盆地流纹岩锆石阴极发光图像、测点编号及年龄

    Figure 2. 

    图 3  御道口盆地流纹岩锆石206Pb/238U年龄值、误差及U-Pb谐和图

    Figure 3. 

    图 4  御道口盆地流纹岩TAS(a)和A/CNK-A/NK(b)图解

    Figure 4. 

    图 5  御道口盆地流纹岩SiO2-((Na2O+K2O)-CaO)图解(a)和SiO2-TFeO/MgO图解(b)

    Figure 5. 

    图 6  御道口盆地流纹岩稀土元素球粒陨石标准化图解(a)与微量元素原始地幔标准化蛛网图(b)

    Figure 6. 

    图 7  御道口盆地流纹岩Nb-Y-Nb-3Ga图解(a)和Y/Nb-Rb/Nb(b)图解(底图据参考文献[39])

    Figure 7. 

    图 8  御道口盆地流纹岩Zr-Sr-Ba图解

    Figure 8. 

    图 9  御道口盆地流纹岩(87Sr/86Sr)i-εNd(t)(a)和(87Sr/86Sr)i-(143Nd/144Nd)i(b)图解

    Figure 9. 

    图 10  御道口盆地流纹岩206Pb/204Pb-207Pb/204Pb(a,底图据参考文献[71])和206Pb/204Pb-208Pb/204Pb(b)图解

    Figure 10. 

    表 1  御道口盆地流纹岩(YDK001)SHRIMP锆石U-Th-Pb同位素分析结果

    Table 1.  Analytical result of SHRIMP zircons U-Th-Pb of the rhyolite (YDK001) from the Yudaokou basin

    测定点编号 206Pbc/% U/10-6 Th/10-6 232Th/238U 206pb*/10-6 206Pb/238U年龄/Ma 207Pb*/235U ±% 206Pb*/238U ±% 误差相关系数
    1.1 -- 228 225 1.02 5.18 168.8±2.3 0.190 3.7 0.02654 1.4 0.375
    2.1 0.31 76 45 0.61 1.60 155.5±3.0 0.176 14 0.02441 2.0 0.141
    3.1 1.44 61 34 0.58 1.28 153.0±2.9 0.143 10 0.02401 1.9 0.190
    4.1 0.36 73 43 0.61 1.57 158.6±4.0 0.173 20 0.02490 2.5 0.129
    5.1 5.65 51 29 0.59 1.11 154.2±5.0 0.02421 3.3
    6.1 1.42 63 43 0.71 1.32 153.3±4.8 0.146 29 0.02406 3.2 0.110
    7.1 6.18 68 45 0.67 1.49 151.7±3.8 0.02382 2.6
    8.1 -- 45 27 0.62 0.96 159.2±3.2 0.187 7.8 0.02500 2.1 0.265
    9.1 1.32 79 62 0.81 1.65 152.8±3.3 0.125 29 0.02399 2.2 0.075
    10.1 0.00 59 33 0.58 1.30 162.3±4.1 0.163 5.8 0.02549 2.6 0.443
    11.1 1.26 78 53 0.70 1.63 152.7±6.8 0.183 24 0.0240 4.5 0.187
    12.1 1.95 54 34 0.65 1.18 158.0±3.1 0.120 13 0.02481 2.0 0.156
    13.1 1.12 56 36 0.67 1.17 153.9±4.1 0.138 34 0.02416 2.7 0.078
    14.1 0.85 76 43 0.59 1.58 153.2±3.5 0.145 26 0.02404 2.3 0.088
    15.1 -- 43 25 0.60 0.90 157.1±3.2 0.178 6.2 0.02468 2.1 0.335
    16.1 0.96 55 33 0.61 1.18 156.2±3.0 0.153 9.1 0.02453 2.0 0.214
    注:206Pb*为放射性成因铅;206Pbc为普通铅206Pb占总206Pb的百分比;普通铅根据实测204Pb进行校正;误差为1σ
    下载: 导出CSV

    表 2  御道口盆地流纹岩主量、微量和稀土元素分析结果及有关参数

    Table 2.  Analysis result of major, trace and rare earth element of the rhyolites from Yudaokou basin

    岩性 肉红色流纹岩 灰白色流纹岩
    样号 YDK001 YDK002 YDK003 YDK101 YDK102 YDK104 YDK105 YDK106 YDK107
    SiO2 69.2 72.0 70.5 73.6 72.5 73.0 74.2 70.5 69.9
    TiO2 0.44 0.42 0.41 0.18 0.19 0.21 0.19 0.16 0.15
    Al2O3 16.5 15.1 15.1 12.8 13.2 13.8 12.9 14.7 14.3
    MgO 0.26 0.26 0.25 0.15 0.11 0.11 0.09 0.11 0.10
    MnO 0.12 0.04 0.04 0.06 0.06 0.06 0.06 0.08 0.09
    Fe2O3 1.54 2.02 1.76 2.45 1.79 0.99 0.57 0.72 0.76
    FeO 1.88 1.02 1.85 0.78 1.77 1.87 2.03 2.65 2.95
    CaO 0.16 0.17 0.38 0.42 0.48 0.43 0.42 0.44 0.60
    Na2O 1.81 1.09 0.91 1.62 1.59 1.55 2.64 1.89 2.15
    K2O 6.55 6.89 7.24 6.48 6.23 5.67 5.07 6.07 6.11
    P2O5 0.07 0.08 0.07 0.02 0.01 0.02 0.01 0.01 0.01
    烧失量 1.44 1.10 1.58 1.44 2.08 2.17 1.88 2.32 2.70
    总量 100 100 100 99.9 100 99.9 100 99.7 99.8
    K2O+Na2O 8.36 7.98 8.15 8.10 7.82 7.22 7.71 7.96 8.26
    K2O/Na2O 3.62 6.31 7.96 4.00 3.92 3.66 1.92 3.21 2.84
    Fe2O3+FeO 3.42 3.04 3.61 3.23 3.56 2.86 2.60 3.37 3.71
    Fe2O3/FeO 0.82 1.98 0.95 3.14 1.01 0.53 0.28 0.27 0.26
    A/CNK 1.59 1.57 1.50 1.22 1.28 1.46 1.21 1.40 1.27
    La 78.6 77.8 70.3 123 134 116 118 112 100
    Ce 152 154 148 232 246 132 151 166 196
    Pr 17.6 17.2 15.6 27.4 30.0 24.9 25.7 24.6 21.9
    Nd 61.6 60.5 54.5 99.2 107.8 87.7 90.7 88.0 77.9
    Sm 10.8 10.3 9.35 17.0 18.2 14.8 15.6 14.9 13.2
    Eu 1.61 1.42 1.29 0.16 0.14 0.11 0.11 0.11 0.10
    Gd 9.01 8.99 8.59 14.5 15.9 13.1 14.0 12.9 11.9
    Tb 1.47 1.46 1.38 2.29 2.66 2.13 2.42 2.09 2.04
    Dy 8.96 8.63 8.21 13.3 16.6 13.2 16.1 12.1 13.2
    Ho 1.80 1.73 1.65 2.57 3.48 2.76 3.40 2.38 2.68
    Er 5.33 5.10 4.86 7.27 10.3 8.49 10.4 6.69 8.14
    Tm 0.90 0.81 0.80 1.19 1.76 1.42 1.75 1.09 1.33
    Yb 6.46 5.60 5.42 7.87 11.51 9.20 11.12 7.20 8.81
    Lu 0.97 0.83 0.82 1.14 1.63 1.30 1.59 1.06 1.28
    ΣREE 357 354 331 549 600 427 462 452 458
    ΣLREE 323 321 299 499 536 375 401 406 409
    ΣHREE 34.9 33.2 31.7 50.1 63.9 51.5 60.8 45.5 49.3
    ΣL/ΣH 9.24 9.68 9.43 9.96 8.40 7.28 6.60 8.93 8.30
    (La/Yb)N 8.22 9.40 8.76 10.6 7.86 8.50 7.17 10.5 7.70
    (La/Sm)N 4.60 4.77 4.73 4.57 4.64 4.93 4.75 4.75 4.77
    (Gd/Yb)N 1.13 1.30 1.28 1.50 1.12 1.15 1.02 1.45 1.09
    δEu 0.49 0.44 0.43 0.03 0.02 0.02 0.02 0.02 0.02
    Rb 235 254 229 378 353 220 254 354 306
    Sr 118 105 125 33.6 33.8 45.2 32.2 37.4 30.8
    Ba 478 406 487 58.6 62.3 30.0 19.4 43.0 28.2
    Th 17.2 17.4 17.2 28.7 32.2 27.7 26.0 28.8 24.0
    U 4.40 2.94 2.63 4.13 5.75 5.61 4.81 6.09 4.61
    Zr 653 681 597 650 720 757 744 769 735
    Hf 19.2 20.9 16.2 24.6 25.1 24.0 24.9 23.3 23.5
    Nb 31.7 35.0 31.3 42.4 42.9 46.3 44.0 40.3 37.7
    Ta 2.25 2.44 2.16 3.00 3.08 3.14 2.85 2.87 2.65
    Y 45.6 45.5 41.9 64.6 92.2 71.4 91.7 61.4 71.5
    V 7.67 5.53 7.64 0.69 0.57 0.59 0.56 0.51 0.36
    Ga 27.1 28.0 27.4 33.3 34.8 34.5 35.4 41.5 38.3
    Rb/Sr 2.00 2.42 1.84 11.3 10.5 4.87 7.89 9.46 9.91
    Ti/Zr 4.10 3.73 4.18 1.68 1.62 1.70 1.56 1.28 1.26
    Ti/Y 58.7 55.7 59.6 16.9 12.6 18.0 12.7 16.0 12.9
    Zr+Nb+Ce+Y 882 915 819 989 1101 1006 1031 1037 1040
    104Ga/Al 3.09 3.50 3.42 4.93 4.99 4.71 5.19 5.32 5.07
    TZr/℃ 970 977 956 948 965 985 964 980 962
    注:主量元素含量单位为%,微量和稀土元素含量单位为10-6
    下载: 导出CSV

    表 3  御道口盆地流纹岩锶-钕-铅-氧同位素分析结果及有关参数

    Table 3.  Sr-Nd-Pb-O isotopic compositions of the rhyolite from Yudaokou basin

    元素 肉红色流纹岩 灰白色流纹岩
    YDK001 YDK002 YDK003 YDK105 YDK107
    Rb/10-6 235 254 229 254 306
    Sr/10-6 118 105 125 32.2 30.8
    87Rb/86Sr 5.64 6.82 5.19 22.3 28.0
    (87Sr/86Sr)s 0.721404 0.723629 0.722611 0.757936 0.771323
    0.000012 0.000013 0.000011 0.000014 0.000012
    (87Sr/86Sr)i 0.708967 0.708606 0.711171 0.708862 0.709631
    Sm/10-6 10.8 10.3 10.4 15.6 13.2
    Nd/10-6 61.6 60.5 54.5 90.7 77.9
    147Sm/144Nd 0.110197 0.107278 0.119975 0.108911 0.107462
    (143Nd/144Nd)s 0.512122 0.512183 0.512165 0.512052 0.512046
    0.000014 0.000011 0.000015 0.000011 0.000009
    (143Nd/144Nd)i 0.512010 0.512074 0.512043 0.511942 0.511937
    εNd(t) -8.36 -7.11 -7.71 -9.70 -9.78
    ƒSm/Nd -0.44 -0.46 -0.39 -0.45 -0.46
    TDM2/Ma 1621 1520 1569 1730 1737
    U/10-6 4.401 2.944 2.631 4.813 4.613
    Th/10-6 17.19 17.43 17.23 25.98 23.95
    Pb/10-6 34.62 28.24 23.71 28.89 38.42
    (206Pb/204Pb)s 17.155 17.175 17.229 17.178 17.127
    0.010 0.008 0.014 0.018 0.011
    (207Pb/204Pb)s 15.383 15.369 15.436 15.432 15.424
    0.014 0.008 0.020 0.023 0.013
    (208Pb/204Pb)s 37.566 37.600 37.844 38.168 38.002
    0.011 0.007 0.014 0.028 0.016
    (206pb广4pb)t 16.96 17.02 17.06 16.93 16.95
    (207Pb/204Pb)t 15.38 15.37 15.43 15.43 15.42
    (208Pb/204Pb)t 37.32 37.30 37.49 37.72 37.70
    δ18OV-SMOW 7.7 7.4 9.5 9.0 6.5
    注:锶、钕、铅同位素比值年龄校正时采用本文获得的流纹岩SHRIMP锆石U-Pb年龄155Ma,计算公式见参考文献[10]
    下载: 导出CSV

    表 4  华北陆块北缘断裂带两侧晚侏罗世—早白垩世早期火山岩锆石U-Pb年龄

    Table 4.  Zircon U-Pb ages of the Late Jurassic-early Early Cretaceous volcanic rocks from both sides of the fault zone on the northern margin of the North China Block

    地点 岩石地层单位 岩性 分析方法 年龄/Ma 资料来源
    辽源地块 克旗红山子 新民组 流纹岩 SHRIMP 156.5±1.6 [8]
    流纹岩 154.7±1.7
    流纹岩 156.5±1.4
    克旗芝瑞克旗万合永克旗托河 流纹岩 156.9±1.7 [13]
    流纹岩 159.6±1.5 [16]
    流纹岩 159.6±1.5 [19]
    内蒙古基底隆起带 围场御道口 流纹岩 155.2±2.0 本文
    围场多本沟 流纹岩 156.6±1.8 [15]
    沽源 张家口组 粗面岩 138.4±1.3 [11]
    粗面岩 139.5±1.3 [11]
    流纹岩 138.6±1.4 [9]
    丰宁 流纹岩 140.2±1.9 [33]
    粗面岩 140.3±1.4 [14]
    张家口 英安岩 LA-ICP-MS 139.6±2.6 [50]
    英安岩 136.1±1.4
    英安岩 143.0±3.7
    英安岩 138.9±2.7
    燕山板内造山带 滦平 张家口组 玄武安山岩 LA-ICP-MS 130.2±3.0 [51]
    玄武安山岩 131.4±3.7
    流纹岩 135.2±2.3 [52]
    凝灰岩 135.7±1.8
    流纹岩 SHRIMP 135.4±1.6 [53]
    流纹岩 136.3±3.4
    熔结凝灰岩 135.4±1.6 [54]
    凝灰岩 133.9±2.5
    沉凝灰岩 130.1±2.5
    凌源 英安岩 LA-ICP-MS 132.4±1.4 [55]
    角砾熔岩 130.2±1.5
    酸性凝灰岩 129.6±0.9
    酸性凝灰岩 129.4±0.8
    英安岩 129.1±1.7
    流纹岩 131.7±1.7
    滦平 髫髻山组 安山岩 LA-ICP-MS 162.8±3.2 [52]
    安山岩 153.8±5.0 [50]
    承德 粗安岩 155.5±2.9 [56]
    岩屑凝灰岩 152.5±0.9
    流纹岩 164.4±2.7 [50]
    玻屑凝灰岩 SHRIMP 151.5±3.4 [57]
    凝灰岩 153.3±3.3
    安山岩 153.6±3.8 [58]
    北京西山 安山岩 157.0±3.0 [59]
    北票 蓝旗组 流纹岩 160.0±6.0 [60]
    安山玢岩 153.0±2.0
    安山玢岩 153.5±1.2 [61]
    凝灰岩 157.2±3.8
    流纹英安岩 LA-ICP-MS 154.0±4.7 [50]
    朝阳 安山岩 161.8±2.1
    凌源 英安岩 157.1±2.4 [52]
    英安岩 156.9±3.0 [50]
    安山质熔岩 159.4±3.6 [62]
    凝灰岩 158.0±1.0 [59]
    安山质角砾岩 SHRIMP 158.0±1.0 [59]
    宁城 粗安岩 152.6±2.6 [54]
    石英粗安岩 163.8±2.6
    粗面质凝灰岩 164.6±2.0 [57]
    粗安岩 164.6±2.4 [63]
    凝灰岩 165.0±1.2 [60]
    下载: 导出CSV
  • [1]

    Wu F Y, Sun D Y, Ge W C, et al. Geochronology of the Phanerozoic gran-itoids in northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41(1):1-30.

    [2]

    李锦轶, 曲军峰, 张进, 等.中国北方造山区显生宙地质历史重建与成矿地质背景研究进展[J].地质通报, 2013, 32(2/3):207-219. http://www.cnki.com.cn/Article/CJFDTotal-ZQYD2013Z1000.htm

    [3]

    李真真, 李光明, 孟昭君, 等.大兴安岭岔路口巨型斑岩钼矿床角砾岩相的划分、特征及成因[J].矿床地质, 2014, 33(3):607-624. doi: 10.3969/j.issn.0258-7106.2014.03.011

    [4]

    河北省地质矿产局.河北省岩石地层[M].武汉:中国地质大学出版社, 1996:1-146.

    [5]

    内蒙古自治区地质矿产局.内蒙古自治区岩石地层[M].武汉:中国地质大学出版社, 1997:1-344.

    [6]

    王友勤, 苏养正, 刘尔义.东北区区域地层[M].武汉:中国地质大学出版社, 1997:1-175.

    [7]

    Zhang J H, Gao S, Ge W C, et al. Geochronology of the Mesozoic volcanic rocks in the Great Xing'an Range, northeastern China:Implications for subduction-induced delamination[J]. Chemical Geology, 2010, 276:144-165. doi: 10.1016/j.chemgeo.2010.05.013

    [8]

    巫建华, 武珺, 祝洪涛, 等.大兴安岭红山子盆地火山岩系岩石地层对比[J].高校地质学报, 2013, 19(3):472-483. doi: 10.3969/j.issn.1006-7493.2013.03.009

    [9]

    巫建华, 丁辉, 牛子良, 等.张麻井U-Mo矿床围岩的地质时代及其地质意义[J].矿床地质, 2015, 34(4):757-768.

    [10]

    巫建华, 解开瑞, 祝洪涛, 等.大兴安岭南端红山子盆地流纹岩的成因:元素和Sr-Nd-Pb同位素制约[J].吉林大学学报(地球科学版), 2016, (6):1724-1739. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201606010

    [11]

    巫建华, 张婧妍, 姜山, 等.冀北沽源铀矿田粗面岩的年代学、地球化学特征及岩石成因[J].地球化学, 2017, 46(2):105-122. doi: 10.3969/j.issn.0379-1726.2017.02.001

    [12]

    巫建华, 郭佳磊, 祝洪涛, 等.内蒙古东南缘芝瑞盆地流纹斑岩年代学、地球化学特征及地质意义[J].高校地质学报, 2017, 23(3):383-396. http://d.old.wanfangdata.com.cn/Periodical/gxdzxb201703002

    [13]

    解开瑞, 巫建华, 祝洪涛, 等.大兴安岭南端芝瑞盆地流纹岩年代学、地球化学及岩石成因[J].地球化学, 2016, 45(3):249-267. doi: 10.3969/j.issn.0379-1726.2016.03.003

    [14]

    夏应冰, 巫建华, 姜山, 等.冀北大滩盆地铀(钼)成矿粗面岩的年代学、地球化学特征及成因研究[J].高校地质学报, 2016, 22(4):608-620. http://www.cnki.com.cn/Article/CJFDTotal-GXDX201604003.htm

    [15]

    宋凯, 巫建华, 牛子良, 等.冀北多本沟盆地流纹岩年代学、地球化学特征及地质意义[J].东华理工大学学报(自然科学版), 2017, 40(04):323-333. doi: 10.3969/j.issn.1674-3504.2017.04.004

    [16]

    彭啟辉.赤峰下马架-刘家营子流纹岩年代学与地球化学特征[D].东华理工大学硕士学位论文, 2015.http://cdmd.cnki.com.cn/Article/CDMD-10405-1015990457.htm

    [17]

    曹光跃, 刘哲, 薛怀民.内蒙古西太仆寺破火山碎斑熔岩与流纹岩LA-ICP-MS锆石U-Pb年龄和地球化学特征[J].地质通报, 2018, 37(3):397-410. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2018020318&flag=1

    [18]

    郭建刚, 张渝金, 张超, 等.内蒙古阿鲁科尔沁旗坤都地区满克头鄂博组火山岩形成时代与地球化学特征[J].地质通报, 2018, 37(9):1682-1692. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20180910&flag=1

    [19]

    姜山, 巫建华, 王常东, 等.赤峰托河盆地流纹岩年代学、地球化学特征及其地质意义[J].高校地质学报, 2018, 24(6):896-906. http://d.old.wanfangdata.com.cn/Periodical/gxdzxb201806009

    [20]

    宋维民, 杜继宇, 那福超, 等.大兴安岭中段突泉地区早白垩世碱性流纹岩锆石U-Pb定年及岩石[J].地质通报, 2019, 38(4):619-631. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20190412&flag=1

    [21]

    隋振民, 徐学纯.大兴安岭东北部侏罗纪花岗岩类Sr-Nd同位素特征及其地质意义[J].中国地质, 2010, 37(1):48-55. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201001005

    [22]

    郭志军, 李进文, 黄光杰, 等.内蒙古红花尔基白钨矿矿床赋矿花岗岩Sr-Nd-Pb-Hf同位素特征[J].中国地质, 2014, 41(4):1226-1241. doi: 10.3969/j.issn.1000-3657.2014.04.016

    [23]

    肖成东, 张忠良, 赵利青.东蒙地区燕山期花岗岩Nd、Sr、Pb同位素及其岩石成因[J].中国地质, 2004, 31(1):57-63. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi200401008

    [24]

    蔡剑辉, 阎国翰, 肖成东, 等.太行山-大兴安岭构造岩浆带中生代侵入岩Nd、Sr、Pb同位素特征及物质来源探讨[J].岩石学报, 2004, 20(5):1221-1242. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200405018

    [25]

    郭志军, 周振华, 李贵涛, 等.内蒙古敖尔盖铜矿中-酸性侵入岩体SHRIMP锆石U-Pb定年与岩石地球化学特征研究[J].中国地质, 2012, 39(6):1486-1500. doi: 10.3969/j.issn.1000-3657.2012.06.003

    [26]

    周漪, 葛文春, 王清海.大兴安岭中部乌兰浩特地区中生代花岗岩的成因——地球化学及Sr-Nd-Hf同位素制约[J].岩石矿物学杂志, 2011, 30(5):901-923. doi: 10.3969/j.issn.1000-6524.2011.05.013

    [27]

    范蔚茗, 郭锋, 高晓峰, 等.东北地区中生代火成岩Sr-Nd同位素区划及其大地构造意义[J].地球化学, 2008, 37(4):361-372. doi: 10.3321/j.issn:0379-1726.2008.04.010

    [28]

    梁清玲, 江思宏, 刘翼飞.冀北东猴顶A型花岗岩成因:岩石地球化学、锆石U-Pb年代学及Sr-Nd-Pb-Hf同位素制约[J].地质论评, 2013, 59(6):1119-1130. http://d.old.wanfangdata.com.cn/Periodical/dzlp201306013

    [29]

    刘源, 江思宏, 陈春良.河北承德甲山正长岩成因的Sr-Nd-PbHf同位素制约[J].岩石矿物学杂志, 2015, 34(1):14-34. doi: 10.3969/j.issn.1000-6524.2015.01.002

    [30]

    汪洋, 程素华.张家口地区张家口组火山岩元素地球化学特征及成因[J].矿物岩石, 2010, 30(1):75-82. doi: 10.3969/j.issn.1001-6872.2010.01.013

    [31]

    徐希阳, 姜能, 范文博, 等.冀东青龙地区中生代花岗岩的岩石成因和地质意义[J].岩石学报, 2016, 32(1):212-232. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201601023

    [32]

    周新华, 张国辉, 杨进辉, 等.华北克拉通北缘晚中生代火山岩Sr-Nd-Hf同位素填图及其构造意义[J].地球化学, 2001, 30(1):10-23. doi: 10.3321/j.issn:0379-1726.2001.01.003

    [33]

    张雅菲, 巫建华, 姜山, 等.冀北大滩盆地铀(钼)成矿流纹岩-花岗斑岩SHRIMP锆石U-Pb定年、地球化学及Sr-Nd同位素特征[J].岩石学报. 2016, 32(1):193-211. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201601022

    [34]

    宋彪, 张玉海, 万渝生, 等.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J].地质论评, 2002, 48(S1):26-30. http://d.old.wanfangdata.com.cn/Periodical/OA000005931

    [35]

    李献华, 刘颖, 涂湘林, 等.硅酸盐岩石化学组成的ICP-AES和ICP-MS准确测定:酸溶与碱熔分解样品方法的对比[J].地球化学, 2002, 31(3):289-294. doi: 10.3321/j.issn:0379-1726.2002.03.010

    [36]

    吴元保, 郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 2004, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002

    [37]

    Sun S S, McDonough W F. Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the ocean basins. Geological Society London Special Publications, 1989, 42(1): 313-345.

    [38]

    黄雄飞, 莫宣学, 喻学惠, 等.西秦岭宕昌地区晚三叠世酸性火山岩的锆石U-Pb年代学、地球化学及其地质意义[J].岩石学报, 2013, 29(11):3968-3980. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201311025

    [39]

    Eby G N. Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications[J]. Geology, 1992, 20(7):641-644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2

    [40]

    蔡剑辉, 阎国翰, 牟保磊, 等.北京房山岩体锆石U-Pb年龄和Sr、Nd、Pb同位素与微量元素特征及成因探讨[J].岩石学报, 2005, 21(3):776-788. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200503017

    [41]

    Jahn B M, Wu F Y, Lo C H, et al. Crust-mantle interaction induced by deep subduction of the continental crust:geochemical and Sr-Nd isotropic evidence from post-colloisional maficultramafic intrusion of the northern Dabie complex, central China[J]. Chemical Geology, 1999, 157(1):119-146. https://www.sciencedirect.com/science/article/abs/pii/S0009254198001971

    [42]

    张国辉, 周新华, 孙敏, 等.河北汉诺坝玄武岩中麻粒岩类和辉石岩类俘虏体Sr、Nd、Pb同位素特征及其地质意义[J].岩石学报, 1998, 14(2):190-197. http://www.cnki.com.cn/Article/CJFDTotal-YSXB802.005.htm

    [43]

    Yang J H, Chung S L, Zhai M G, et al. Geochemical and Sr-NdPb isotopic compositions of mafic dikes from the Jiaodong Peninsula, China:evidence for vein-plus-peridotite melting in the lithospheric mantle[J]. Lithosphere, 2004, 73(3/4):145-160.

    [44]

    Yang J H, Wu F Y, Chung S L, et al. Multiple sources for the origin of granites:Geochemical and Nd/Sr isotopic evidence from the Gudaoling granite and its mafic enclaves, northeast China[J]. Geochimica et Cosmochimica Acta, 2004, 68(21):4469-4483. doi: 10.1016/j.gca.2004.04.015

    [45]

    Zhang H F, Sun M, Zhou X H, et al. Geochemical constraints on the origin of Mesozoic alkaline intrusive complexes from the North China Craton and tectonic implications[J]. Lithos, 2005, 81(1/4):297-317. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=655aa3a0f89c1cc9822036ceec6c947e

    [46]

    郑永飞, 陈江峰.稳定同位素地球化学[M].北京:科学出版社, 2000:1-316.

    [47]

    Valley J W, Kinny P D, Schulze D J, et al. Zircon megacrysts from kimberlite:Oxygen isotope variability among mantle melts[J]. Contributions to Mineralogy and Petrology, 1998, 133:1-11. doi: 10.1007/s004100050432

    [48]

    Gradstein F M, Ogg J G, Smith A G, et al. A new Geologic Time Scale, with special reference to Precambrian and Neogene[J]. Episodes, 2004, 27(2):83-100. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4d054057318383e30b903a635acb5a35

    [49]

    章森桂, 张允白, 严惠君."国际地层表"(2008)简介[J].地层学杂志, 2009, 33(1):1-10. doi: 10.3969/j.issn.0253-4959.2009.01.001

    [50]

    Zhang J H, Ge W C, Wu F Y, et al. Large-scale Early Cretaceous volcanic events in the northern Great Xing' an Range, Northeastern China[J]. Lithos, 2008, 102:138-157. doi: 10.1016/j.lithos.2007.08.011

    [51]

    张宏, 袁洪林, 胡兆初, 等.冀北滦平地区中生代火山岩地层的锆石U-Pb测年及启示[J].地球科学——中国地质大学学报, 2005, 30(6):707-720. http://www.cnki.com.cn/Article/CJFDTotal-DQKX200506006.htm

    [52]

    张宏, 柳小明, 张哗卿, 等.冀北滦平-辽西凌源地区张家口组火山岩顶、底的单颗粒锆石U-Pb测年及意义[J].地球科学:中国地质大学学报, 2005, 30(4):387-401. http://d.old.wanfangdata.com.cn/Periodical/dqkx200504001

    [53]

    Niu X L, Chen B, Liu A K, et al. Petrological and Sr-Nd-Os isotopic constraints on the origin of the Fanshan ultrapotassic complex from the North China Craton[J]. Lithos, 2012, 149:146-158. doi: 10.1016/j.lithos.2012.05.017

    [54]

    柳永清, 李佩贤, 田树刚.冀北滦平晚中生代火山碎屑(熔)岩中锆石SHRIMP U-Pb年龄及其地质意义[J].岩石矿物学杂志, 2003, 22(3):237-244. doi: 10.3969/j.issn.1000-6524.2003.03.005

    [55]

    张宏, 柳小明, 高山, 等.辽西凌源地区张家口组的重新厘定及其意义:来自激光ICP-MS锆石U-Pb年龄的制约[J].地质通报, 2005, 24(2):110-117 doi: 10.3969/j.issn.1671-2552.2005.02.003 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20050224&flag=1

    [56]

    刘健, 赵越, 柳小明.冀北承德盆地髫髻山组火山岩的时代[J].岩石学报, 2006, 22(11):2617-2630. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200611001

    [57]

    Cope T D. Sedimentary Evolution of the Yan shan Fold-thrust Belt, Northeast China[D]. Stanford University(Stanford) Ph. D thesis, 2003: 1-230.

    [58]

    Davis G A. The late Jursasic "Tuchengzi/Houcheng" Formation of the Yanshna Fold-Thrust Belt:an annlysis[J]. Earth Science Frontiers, 2005, l2(4):328.

    [59]

    赵越, 张拴宏, 徐刚, 等.燕山板内变形带侏罗纪主要构造事件[J].地质通报, 2004, 23(9/10):854-863. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=200409156&flag=1

    [60]

    Yang J H, Wu F Y, Wilde A S, et al. Petrogenesis of an alkali syenite-granite-rhyolite suite in the Yanshan Fold and Thrust Belt, Eastern North China Craton:geochronological, geochemical and Nd-Sr-Hf isotopic evidence for lithospheric thinning[J]. Journal of Petrology, 2008, 49(2):315-351. https://www.mendeley.com/catalogue/petrogenesis-alkali-syenitegraniterhyolite-suite-yanshan-fold-thrust-belt-eastern-north-china-craton/

    [61]

    杨蔚.辽西中生代火山岩年代学及地球化学研究[D].中国科学技术大学博士学位论文, 2007.http://cdmd.cnki.com.cn/article/cdmd-10358-2008029464.htm

    [62]

    马强, 张建平.辽西北票蓝旗组火山岩锆石U-Pb年龄和Hf同位素组成[J].岩石学报, 2009, 25(12):3287-3297. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200912016

    [63]

    陈文, 季强, 刘敦一, 等.内蒙古宁城地区道虎沟化石层同位素年代学[J].地质通报, 2004, 23(12):1165-1169. doi: 10.3969/j.issn.1671-2552.2004.12.001 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2004012212&flag=1

    [64]

    Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4):956-983. doi: 10.1093/petrology/25.4.956

    [65]

    Tischendorf G, Paelchen W. Zur Klassifikation von Granitoiden/Classification of granitoids[J]. Zeitschrift fuer Geologische Wissenschaften, 1985, 13(5):615-627.

    [66]

    Wilson M. Igneous Petrology:A global tectonic approach[M].London:Unwin Hyman, 1989:1-466.

    [67]

    徐学义, 王洪亮, 陈隽璐, 等.西秦岭天水尹道寺中生代酸性火山岩锆石U-Pb定年和元素地球化学研究[J].岩石学报, 2008, 23(11):2845-2856. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200711015

    [68]

    邵济安, 牟保磊, 朱慧忠, 等.大兴安岭中南段中生代成矿物质的深部来源与背景[J].岩石学报, 2010, 26(3):649-656. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201003001

    [69]

    Hart S R. A large scale isotope anomaly in the Sourthern Hemisphere mantle[J]. Nature, 1984, 309:753-757. doi: 10.1038/309753a0

    [70]

    Zindler A, Hart S R. Chemical Geodynamics[J]. Annual Reviews of Earth and Planetary Sciences, 1986, 14:493-571. doi: 10.1146/annurev.ea.14.050186.002425

    [71]

    陈志广, 张连昌, 吴华英, 等.内蒙古西拉木伦成矿带碾子沟相矿区A型花岗岩地球化学和构造背景[J].岩石学报, 2008, 24(4):879-889. http://d.old.wanfangdata.com.cn/NSTLQK/10.1007-s11934-009-0012-0/

    [72]

    李竞妍, 郭锋, 李超文, 等.东北地区晚古生代-中生代I型和A型花岗岩Nd同位素变化趋势及其构造意义[J].岩石学报, 2014, 30(7):1995-2008. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201407013

    [73]

    Wang T, Guo L, Zhang L, et al. Timing and evolution of Jurassic-Cretaceous granitoid magmatisms in the Mongol-Okhotsk belt and adjacent areas, NE Asia:Implications for transition from contractional crustal thickening to extensional thinning and geodynamic settings[J]. Journal of Asian Earth Sciences, 2015, 97:365-392. doi: 10.1016/j.jseaes.2014.10.005

    [74]

    Guo F, Fan W M, Gao X F, et al. Sr-Nd-Pb isotope mapping of Mesozoic igneous rocks in NE China:Constraints on tectonic framework and Phanerozoic crustal growth[J]. Lithos, 2010, 120(3/4):563-578. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-j.lithos.2010.09.020/

    [75]

    周新华, 英基丰, 张连昌, 等.大兴安岭晚中生代火山岩成因与古老地块物质贡献:锆石U-Pb年龄及多元同位素制约[J].地球科学——中国地质大学学报, 2009, 34(1):1-10. http://d.old.wanfangdata.com.cn/Periodical/dqkx200901001

    [76]

    樊祺诚, 隋建立, 刘若新, 等.汉诺坝榴辉岩相石榴石岩:岩浆底侵作用新证据[J].岩石学报, 2001, 17(1):1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200101001

    [77]

    汪洋, 姬广义, 孙善平, 等.北京西山沿河城东岭台组火山岩成因及其地质意义[J].地质论评, 2009, 55(2):191-214. doi: 10.3321/j.issn:0371-5736.2009.02.005

  • 加载中

(10)

(4)

计量
  • 文章访问数:  531
  • PDF下载数:  3
  • 施引文献:  0
出版历程
收稿日期:  2017-06-18
修回日期:  2017-08-14
刊出日期:  2019-07-15

目录