Geochemical characteristics, zircon U-Pb ages and geological implications of the eastern Innermongolia in Yanggeliya Mountain intermediate-acid rock
-
摘要:
内蒙古东部央格力雅山岩体岩性为正长花岗岩、二长花岗岩和英云闪长岩。正长花岗岩U-Pb年龄为130.4±1.1Ma,英云闪长岩U-Pb年龄为126.6±3.0Ma、二长花岗岩锆石U-Pb年龄分别为131.6±1.1Ma和130.7±1.5Ma,显示岩体侵位时间为早白垩世。地球化学研究表明,该花岗岩体具有富硅、富碱、贫钙的特征,属准铝质-过铝质高钾钙碱性系列岩石;稀土元素总量较低、轻重稀土元素分馏明显,(La/Nb)N值在9.14~24.86之间、正Eu异常显著(δEu值为1.03~1.53);微量元素K、La、Sr、Gd等明显富集,Nb、Pr、P、Ti等亏损;大离子亲石元素相对高场强元素富集。岩石分异指数平均为80.63,岩石成因类型属高分异I型花岗岩,岩浆来源于下地壳岩石的部分熔融,形成于伸展环境,与古太平洋板块俯冲作用密切相关。
-
关键词:
- 中酸性岩体 /
- 地球化学特征 /
- LA-ICP-MS锆石U-Pb年龄 /
- 岩石成因 /
- 央格力雅山
Abstract:The Yanggeliya Mountain is located in the Oroqen Autonomous Banner, Hulunbuir City, eastern Inner Mongolia. Syenogranite, monzoniticgranite and tonalite are the main rocks, and the LA-ICP-MS zircon U-Pb age indicates that the emplacement time is Early Cretaceous (130.4 ±1.1Ma) for syenogranite, 126.6 ±3.0Ma for monzoniticgranite, 131.6 ±1.1Ma and 130.7±1.5Ma for tonalite. The study of rock geochemistry shows that the granite body is characterized by rich silicon and alkali, and depletion of calcium, belonging to the quasi-aluminum-peraluminous, high-potassic, calcium-alkali series of rocks. The total amount of rare earths is relatively low, the fractionation between LREE and HREE is obvious, and the (La/Nb)N values are between 9.14 and 24.86. The Eu has obvious positive anomalies (the δEu values are in the range of 1.03~1.53). As for trace elements, the values of K, La, Sr and Gd are obviously enriched, whereas Nb, Pr, P and Ti are depleted. Large ionic lithophile elements are enriched with relatively high field strength elements. The rock differentiation index DI averages 80.63. The above characteristics are similar to those of highly differentiated I-type granites. The source of magma was the crust-derived magma series, which was the product of the partial melting of continental crust rock, and the tectonic setting was a stretching environment which was closely related to subduction of ancient Pacific plate.
-
-
图 5 央格力雅山中酸性岩体球粒陨石标准化稀土元素模式图(a)和原始地幔标准化微量元素蛛网图(b)(标准化值据参考文献[25])
Figure 5.
图 6 央格力雅山中酸性岩SiO2-Ce(a, 底图据参考文献[41])和La-La/Nb判别图解(b)
Figure 6.
表 1 央格力雅山中酸性岩全岩主量、微量和稀土元素测试结果
Table 1. Whole-rock major, trace and rare earth elements data of Yanggeliya Mountain intermediate-acid rocks
样品编号 TW2 TW3 TW4 TW6 样品编号 TW2 TW3 TW4 TW6 岩性 正长花岗岩 英云闪长岩 二长花岗岩 二长花岗岩 岩性 正长花岗岩 英云闪长岩 二长花岗岩 二长花岗岩 SiO2 73.8 60.2 74.4 69.1 Gd 1.34 3.87 0.8 3.09 TiO2 0.18 0.65 0.12 0.4 Tb 0.18 0.61 0.11 0.42 Al2O3 13.8 16.9 14.2 15.7 Dy 0.92 3.45 0.55 2.13 Fe2O3 1.99 5.86 1.83 3.29 Ho 0.15 0.64 0.09 0.32 FeO 0.25 1.83 0.18 0.93 Er 0.5 1.94 0.29 1.02 MnO 0.03 0.12 0.03 0.05 Tm 0.07 0.29 0.04 0.13 MgO 0.28 1.88 0.16 0.68 Yb 0.54 2 0.32 0.88 CaO 1.17 4.3 1.56 2.18 Lu 0.09 0.33 0.05 0.14 Na2O 3.76 4.26 4.24 4.62 ΣREE 62.2 133 37.2 134 K2O 4.19 2.34 3.28 3.02 LREE 58.4 120.5 34.9 126.4 P2O5 0.04 0.26 0.02 0.13 HREE 3.79 13.1 2.25 8.14 烧失量 0.18 2.24 0.02 0.21 LREE/HREE 15.4 9.18 15.5 15.5 总计 99.6 100 100 100 (La/Yb)N 18.8 9.41 21.6 24.7 Mg# 19.7 32.1 13.5 23.8 δEu 1.53 1.03 1.61 1.19 R1 2536 1737 2627 2137 δCe 1.05 1.01 0.92 1 R2 408 884 454 574 Rb 125 57 110 79.1 A/NK 1.28 1.77 1.35 1.44 Ba 593 889 558 1083 A/CNK 1.07 0.97 1.06 1.05 K 33720 20359 28901 25467 AR -1.41 -7 -1.58 -2.02 Th 10.9 4.76 7.66 9.29 DI 89.5 63.7 88.2 81.1 U 4.1 1.04 1.23 1.18 TFeO 2.05 7.2 1.83 3.89 Nb 4.37 9.9 4.14 8.43 TFe2O3 2.28 8 2.03 4.32 Sr 387 500 552 500 La 14.2 26.2 9.7 30.2 Ta 0.34 0.55 0.32 0.6 Ce 28.7 55.7 16.4 59.9 p 207 839 119 598 Pr 2.89 6.64 1.66 6.56 Ti 1037 4999 845 2586 Nd 10.1 25.7 5.81 24.3 Rb/Sr 0.32 0.11 0.2 0.16 Sm 1.66 4.8 0.94 4.01 Rb/Nb 28.7 5.76 26.6 9.38 Eu 0.77 1.51 0.47 1.42 La/Nb 3.24 2.65 2.33 3.58 注:分异指数(DI) =Qz+Or+Ab+Ne+Lc+Kp;固结指数(SI)=MgO×100/(MgO+FeO+F2O3+Na2O+K2O);碱度率(AR) =[Al2O3+ CaO+(Na2O+K2O)]/[Al2O3+CaO-(Na2O+K2O)];R1=4Si-11(Na+K)-2(Fe+Ti);R2=6Ca+2Mg+Al; 镁指数(Mg#)=100×(MgO/ 40.3044)/(MgO/40.3044+FeOT/71.844);A/NK=Al2O3/(Na2O+K2O), A/CNK=Al2O3/(CaO+Na2O+K2O) 表 2 央格力雅山中酸性岩锆石U-Th-Pb同位素数据
Table 2. Zircon U-Th-Pb isotope data of the Yanggeliya Mountain intermediate-acid rocks
测点号 含量/10-6 Th/U 同位素比值 年龄/Ma Pb Th U 207Pb/206Pb 1σ/10-2 207Pb/235U 1σ/10-2 206Pb/238U 1σ/10-2 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ TW2-1 10.53 220 402 0.55 0.0513 0.20 0.1462 0.56 0.0207 0.03 254 91 139 5 132 2 TW2-2 16.52 480 578 0.83 0.0469 0.16 0.1345 0.45 0.0209 0.03 42 82 128 4 133 2 TW2-3 15.12 480 558 0.86 0.0526 0.19 0.1437 0.45 0.0202 0.03 309 77 136 4 129 2 TW2-4 12.04 287 468 0.61 0.0485 0.18 0.1346 0.51 0.0202 0.03 124 89 128 5 129 2 TW2-5 18.14 563 673 0.84 0.0523 0.19 0.1413 0.52 0.0197 0.03 300 81 134 5 125 2 TW2-6 7.07 135 284 0.47 0.0537 0.35 0.1486 0.93 0.0202 0.05 367 146 141 8 129 3 TW2-7 25.11 789 945 0.83 0.0501 0.17 0.1397 0.49 0.0203 0.03 211 78 133 4 129 2 TW2-8 21.43 626 804 0.78 0.0511 0.18 0.1434 0.56 0.0203 0.03 256 83 136 5 129 2 TW2-9 15.15 375 567 0.66 0.0492 0.18 0.1416 0.53 0.0208 0.03 167 85 134 5 133 2 TW2-10 13.88 402 545 0.74 0.0521 0.22 0.1407 0.57 0.0200 0.03 298 98 134 5 128 2 TW2-11 14.14 265 575 0.46 0.0495 0.20 0.1386 0.55 0.0205 0.03 169 94 132 5 131 2 TW2-12 10.87 233 450 0.52 0.0466 0.19 0.1293 0.56 0.0202 0.04 32 96 123 5 129 2 TW2-13 18.00 477 656 0.73 0.0521 0.18 0.1514 0.51 0.0212 0.03 300 80 143 4 135 2 TW2-14 8.46 202 331 0.61 0.0482 0.23 0.1345 0.65 0.0204 0.04 109 107 128 6 130 2 TW2-15 9.47 185 385 0.48 0.0522 0.25 0.1459 0.66 0.0206 0.03 295 139 138 6 132 2 TW2-16 19.70 563 747 0.75 0.0519 0.19 0.1491 0.56 0.0209 0.03 280 83 141 5 133 2 TW2-17 12.43 386 492 0.78 0.0533 0.23 0.1448 0.65 0.0197 0.03 339 98 137 6 126 2 TW2-18 14.03 360 552 0.65 0.0502 0.19 0.1419 0.54 0.0205 0.03 206 92 135 5 131 2 TW2-19 12.04 266 470 0.57 0.0527 0.21 0.1509 0.58 0.0210 0.03 322 93 143 5 134 2 TW2-20 13.40 381 525 0.73 0.0504 0.19 0.1365 0.49 0.0199 0.03 213 85 130 4 127 2 TW2-21 10.46 236 414 0.57 0.0482 0.19 0.1367 0.56 0.0206 0.03 109 99 130 5 132 2 TW2-22 14.03 402 538 0.75 0.0486 0.18 0.1343 0.50 0.0201 0.03 128 89 128 4 128 2 TW2-23 14.35 330 547 0.60 0.0482 0.19 0.1373 0.51 0.0208 0.03 106 94 131 5 133 2 TW2-24 14.09 337 539 0.63 0.0499 0.19 0.1407 0.55 0.0203 0.03 191 89 134 5 129 2 TW2-25 14.86 349 582 0.60 0.0479 0.19 0.1340 0.51 0.0202 0.03 95 89 128 5 129 2 TW3-1 2.49 64.5 103 0.62 0.0549 0.32 0.1420 0.79 0.0195 0.04 406 130 135 7 124 3 TW3-2 4.48 200 159 1.26 0.0467 0.29 0.1197 0.68 0.0189 0.04 35 141 115 6 121 2 TW3-4 1.98 49.6 84.8 0.59 0.0518 0.44 0.1307 0.0104 0.0190 0.05 276 192 125 9 121 3 TW3-6 2.64 72.6 99.9 0.73 0.0518 0.45 0.1378 0.98 0.0207 0.07 276 198 131 9 132 4 TW3-8 6.01 231 235 0.98 0.0466 0.24 0.1229 0.65 0.0195 0.04 27.9 119 118 6 125 3 TW3-9 5.41 97.9 226 0.43 0.0473 0.27 0.1345 0.82 0.0208 0.04 65 130 128 7 132 2 TW3-10 8.67 294 333 0.88 0.0493 0.24 0.1321 0.66 0.0198 0.04 161 117 126 6 127 2 TW3-14 8.18 169 329 0.51 0.0529 0.21 0.1411 0.52 0.0198 0.03 328 91 134 5 127 2 TW3-19 14.42 372 540 0.69 0.0505 0.16 0.1406 0.43 0.0203 0.03 217 79 134 4 130 2 TW4-1 9.16 187 361 0.52 0.0482 0.20 0.1362 0.54 0.0206 0.03 109 101 130 5 131 2 TW4-2 13.74 306 530 0.58 0.0483 0.15 0.1381 0.43 0.0208 0.03 122 76 131 4 133 2 TW4-3 18.59 571 714 0.80 0.0548 0.17 0.1508 0.51 0.0200 0.03 467 70 143 5 127 2 TW4-5 16.43 448 642 0.70 0.0463 0.15 0.1298 0.41 0.0204 0.03 13 74 124 4 130 2 TW4-6 11.84 256 471 0.54 0.0487 0.16 0.1366 0.43 0.0204 0.03 200 76 130 4 130 2 TW4-7 7.48 139 299 0.47 0.0486 0.19 0.1380 0.51 0.0208 0.03 132 91 131 5 133 2 TW4-8 14.15 416 545 0.76 0.0481 0.17 0.1331 0.49 0.0201 0.03 102 85 127 4 128 2 TW4-9 23.12 653 848 0.77 0.0469 0.13 0.1346 0.37 0.0207 0.02 42.7 63 128 3 132 2 TW4-10 16.78 395 652 0.60 0.0484 0.15 0.1391 0.45 0.0208 0.03 120 69 132 4 133 2 TW4-11 18.62 514 735 0.70 0.0472 0.16 0.1352 0.50 0.0207 0.03 58 143 129 4 132 2 TW4-12 13.50 357 527 0.68 0.0503 0.16 0.1387 0.45 0.0201 0.03 209 76 132 4 128 2 TW4-13 13.28 346 524 0.66 0.0468 0.18 0.1307 0.53 0.0202 0.03 39 93 125 5 129 2 TW4-14 8.44 189 321 0.59 0.0508 0.21 0.1455 0.61 0.0207 0.03 232 96 138 5 132 2 TW4-15 12.74 320 498 0.64 0.0516 0.19 0.1414 0.48 0.0019 0.03 265 79 134 4 128 2 TW4-16 16.89 482 634 0.76 0.0481 0.14 0.1352 0.40 0.0014 0.03 106 72 129 4 131 2 TW4-18 14.20 315 560 0.56 0.0460 0.16 0.1300 0.45 0.0016 0.03 - - 124 4 131 2 TW4-19 8.50 183 336 0.55 0.0496 0.18 0.1400 0.53 0.0018 0.03 176 87 133 5 131 2 TW4-20 18.25 438 692 0.63 0.0522 0.16 0.1514 0.48 0.0016 0.03 295 72 143 4 134 2 TW4-21 13.81 291 546 0.53 0.0458 0.16 0.1319 0.45 0.0016 0.03 - - 126 4 134 2 TW4-22 20.99 610 751 0.81 0.0489 0.14 0.1454 0.42 0.0014 0.03 143 69 138 4 138 2 TW4-23 11.34 250 434 0.58 0.0514 0.20 0.1512 0.62 0.0020 0.03 261 91 143 5 136 2 TW4-24 16.46 393 624 0.63 0.0518 0.19 0.1507 0.58 0.0019 0.03 280 85 143 5 134 2 TW4-25 15.07 310 593 0.52 0.0467 0.15 0.1369 0.45 0.0015 0.03 35 74 130 4 135 2 TW6-1 9.21 137 264 0.52 0.0554 0.42 0.1623 0.0125 0.0042 0.06 428 168 153 11 137 4 TW6-2 13.3 246 343 0.72 0.0502 0.27 0.1368 0.74 0.0027 0.04 206 126 130 7 127 2 TW6-3 14.3 257 414 0.62 0.0501 0.25 0.1405 0.71 0.0025 0.04 211 119 134 6 129 2 TW6-4 26.7 629 537 1.17 0.0528 0.23 0.1443 0.62 0.0023 0.03 317 98 137 6 127 2 TW6-5 19.9 399 481 0.83 0.0471 0.24 0.1306 0.65 0.0024 0.04 54 114 125 6 128 2 TW6-6 34.2 702 835 0.84 0.0497 0.17 0.1384 0.47 0.0017 0.03 183 80 132 4 128 2 TW6-7 17.9 330 496 0.67 0.0471 0.25 0.1312 0.68 0.0025 0.04 54 118 125 6 129 2 TW6-8 20.7 435 476 0.91 0.0473 0.25 0.1288 0.64 0.0025 0.04 64.9 122 123 6 130 3 TW6-9 15.3 267 419 0.64 0.0478 0.25 0.1328 0.67 0.0025 0.04 87 119 127 6 131 3 TW6-11 16.2 319 438 0.73 0.0478 0.24 0.1293 0.65 0.0024 0.04 100 109 123 6 125 2 TW6-12 12.6 246 321 0.77 0.0515 0.28 0.1470 0.81 0.0028 0.04 261 94 139 7 131 2 TW6-13 14.7 240 393 0.61 0.0476 0.21 0.1397 0.60 0.0021 0.04 80 109 133 5 136 2 TW6-14 13.6 223 368 0.61 0.0504 0.25 0.1494 0.75 0.0025 0.04 213 114 141 7 138 3 TW6-15 13.5 255 368 0.69 0.0495 0.30 0.1412 0.77 0.0030 0.04 169 143 134 7 135 3 TW6-16 15.6 277 405 0.68 0.0477 0.22 0.1395 0.65 0.0022 0.03 87 107 133 6 134 2 TW6-17 22.6 480 522 0.92 0.0488 0.21 0.1417 0.62 0.0211 0.04 200 102 135 5 134 3 TW6-18 11.9 199 335 0.59 0.0498 0.29 0.1361 0.77 0.0201 0.04 187 137 130 7 128 3 TW6-19 21.0 468 497 0.94 0.0487 0.23 0.1406 0.69 0.0208 0.04 132 111 134 6 132 3 TW6-20 21.1 430 517 0.83 0.0547 0.30 0.1462 0.73 0.0198 0.04 398 94 139 6 126 2 TW6-21 12.0 209 336 0.62 0.0509 0.27 0.1463 0.77 0.0210 0.04 235 124 139 7 134 3 TW6-22 16.8 336 462 0.73 0.0499 0.24 0.1352 0.62 0.0200 0.04 191 111 129 6 128 3 TW6-23 29.0 646 614 1.05 0.0474 0.20 0.1352 0.54 0.0208 0.04 78 87 129 5 132 2 TW6-24 12.7 214 361 0.59 0.0486 0.26 0.1394 0.76 0.0209 0.04 128 122 132 7 133 3 TW6-25 19.7 372 492 0.76 0.0507 0.30 0.1409 0.76 0.0204 0.04 228 140 134 7 130 2 -
[1] 葛文春, 吴福元, 周长勇, 等.兴蒙造山带东段斑岩型Cu, Mo矿床成矿时代及其地球动力学意义[J].科学通报, 2007, 52(20):2407-2417. doi: 10.3321/j.issn:0023-074x.2007.20.012
[2] Xiao W J, Windley B F, Huang B C, et al. End-Permian to midTriassic termination of the accretionary processes of the southern Altaids:implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia[J]. International Journal of Earth Sciences, 2009, 98(6):1189-1217. doi: 10.1007/s00531-008-0407-z
[3] 佘宏全, 李红红, 李进文, 等.内蒙古大兴安岭中北段铜铅锌金银多金属矿床成矿规律与找矿方向[J].地质学报, 2009, 83(10):1456-1472. doi: 10.3321/j.issn:0001-5717.2009.10.010
[4] 朱伟, 郑婧, 李静.兴蒙造山带构造演化过程探讨[J].地下水, 2013, 35(5):122-124. doi: 10.3969/j.issn.1004-1184.2013.05.046
[5] 龙舟, 来林, 张学斌, 等.内蒙古苏尼特右旗白垩纪A型花岗岩锆石U-Pb年龄、地球化学特征及其构造意义[J].地质与勘探, 2017, (6):1115-1128. doi: 10.3969/j.issn.0495-5331.2017.06.007
[6] 关庆彬, 李世超, 张超, 等.兴蒙造山带南缘东段和龙地区Ⅰ型花岗岩锆石U-Pb定年、地球化学特征及其地质意义[J].岩石学报, 2016, 32(9):2690-2706. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201609007
[7] 洪大卫.兴蒙造山带正ε(Nd, t)值花岗岩的成因和大陆地壳生长[J].地学前缘, 2000, (2):441-456. doi: 10.3321/j.issn:1005-2321.2000.02.012
[8] Cao H H, Xu W L, Pei F P, et al. Zircon U-Pb geochronology and petrogenesis of the Late Paleozoic-Early Mesozoic intrusive rocks in the eastern Segment of the northern margin of the North China Block[J]. Lithos, 2013, 170/171:191-207. doi: 10.1016/j.lithos.2013.03.006
[9] Wang Fei, Zhou X H, Zhang L C, et al. Late Mesozoic volcanism in the Great Xing'an Range (NE China):Timing and implications for the dynamic setting of NE Asia[J]. Earth & Planetary Science Letters, 2006, 251(1):179-198.
[10] Fan W M, Guo Feng, Wang Y J, et al. Late Mesozoic calc-alkaline volcanism of post-orogenic extension in the northern Da Hinggan Mountains, Northeastern China[J]. Journal of Volcanology & Geothermal Research, 2003, 121(1):115-135.
[11] Meng Q R. What drove late Mesozoic extension of the northern China-Mongolia tract?[J]. Tectonophysics, 2003, 369(3):155-174. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-S0040-1951(03)00195-1/
[12] 李世超, 徐仲元, 刘正宏, 等.大兴安岭中段玛尼吐组火山岩LAICP-MS锆石U-Pb年龄及地球化学特征[J].地质通报, 2013, 32(2):399-407. doi: 10.3969/j.issn.1671-2552.2013.02.018
[13] 葛文春, 林强, 孙德有, 等.大兴安岭中生代两类流纹岩成因的地球化学研究[J].地球科学-中国地质大学学报, 2000, 25(2):172-178. doi: 10.3321/j.issn:1000-2383.2000.02.012
[14] 徐美君, 许文良, 王枫, 等.小兴安岭中部早侏罗世花岗质岩石的年代学与地球化学及其构造意义[J].岩石学报, 2013, 29(2):354-368. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201302002
[15] Zhang J H, Ge W C, Wu F Y, et al. Large-scale Early Cretaceous volcanic events in the northern Great Xing'an Range[J].Lithos, 2008, 102(1/2):138-157. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d14ba8be8a38a9512101ffec46cee93d
[16] 周建波, 王斌, 曾维顺, 等.大兴安岭地区扎兰屯变质杂岩的碎屑锆石U-Pb年龄及其大地构造意义[J].岩石学报, 2014, 30(7):1879-1888. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201407004
[17] 许文良, 王枫, 裴福萍, 等.中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约[J].岩石学报, 2013, 29(2):339-353. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201302001
[18] Liu Y S, Gao S, Hu Z C, et al.Continental and Oceanic Crust Recycling-induced Melt-Peridotite Interactions in the TransNorth China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths[J]. Journal of Petrology, 2009, 51(1/2):537-571
[19] Ludwig K R. Users manual for Isoplot 3.00:A geochronological toolkit for Microsoft Excel[J]. Berkeley Geochron. Cent. Spec. Pub, 2003, 4:25-32.
[20] Vavra G, Schmid R, Gebauer D. Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons:geochronology of the Ivrea Zone (Southern Alps)[J]. Contributions to Mineralogy & Petrology, 1999, 134(4):380-404. http://d.old.wanfangdata.com.cn/NSTLQK/10.1007-s004100050492/
[21] Hoskin P W O, Black L P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology, 2010, 18(4):423-439. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=20f7cb4f6d72be021ecb081c5fa74229
[22] De la Roche H, Leterrier J, Grande Claude P, et al. A classification of volcanic and plutonic rocks using R1-R2 diagrams and major element analyses-its relationship and current nomenclature[J]. Chemical Geology, 1980, 29(1):183-210. http://www.sciencedirect.com/science/article/pii/0009254180900200
[23] Peccerillo A, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58:63-81. doi: 10.1007/BF00384745
[24] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 1989, 101(5):635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
[25] Sun S S, Mc Donough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society, London, Special Publication, 1989, 42:313-345. doi: 10.1144/GSL.SP.1989.042.01.19
[26] 李莉.安徽铜陵地区基性岩特征与成因[D].中国地质大学(北京)硕士学位论文, 2010.
http://cdmd.cnki.com.cn/Article/CDMD-11415-2010085856.htm [27] Sen C, Dunn T. Dehydration melting of a basaltic composition amphibolite at 115 and 210GPa:Implication for the origin of adakites[J]. Contributions to Mineralogy and Petrology, 1994, 117:394-409. doi: 10.1007/BF00307273
[28] Stevens G, Villaros A, Moyen J F. Selective peritectic garnet entrainment as the origin of geochemical diversity in S-type granites[J]. Geology, 2007, 35(1):9-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d19de893f2ad98fa7f0078ea5a2c4e04
[29] Papoutsa A, Pepiper G, Piper D J W. Systematic mineralogical diversity in A-type granitic intrusions:Control of magmatic source and geological processes[J]. Geological Society of America Bulletin, 2016, 128(3):487-501.
[30] Eby G N. Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications[J]. Geology, 1992, 20(7):641. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
[31] Champion D C, Chappell B W. Petrogenesis of felsic I-type granites:an example from northern Queensland. Trans R Soc Edinb Earth Sci[J]. Transactions of the Royal Society of Edinburgh Earth Sciences, 1992, 83(1/2):115-126.
[32] Whalen J B, Currie K L, Chappell B W. A-type granites:geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy & Petrology, 1987, 95(4):407-419. http://d.old.wanfangdata.com.cn/Periodical/hndzykc201103007
[33] Chappell B W, White A J R. I-and S-type granites in the Lachlan Fold Belt[J]. Transactions of the Royal Society of Edinburgh Earth Sciences, 1992, 83(1/2):1-26.
[34] Chappell B W. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 1999, 46(3):535-551. doi: 10.1016/S0024-4937(98)00086-3
[35] Chappell B W, White A J R. Two contrasting granite types:25 years later[J]. Journal of the Geological Society of Australia, 2015, 48(4):489-499. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027419645/
[36] Yang J H, Wu F Y, Chung S L, et al. A hybrid origin for the Qianshan A-type granite, northeast China:Geochemical and Sr-Nd-Hf isotopic evidence[J]. Lithos, 2006, 89(1):89-106. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ200702001073.htm
[37] 张旗, 王元龙, 金惟俊, 等.造山前、造山和造山后花岗岩的识别[J].地质通报, 2008, 27(1):1-18. doi: 10.3969/j.issn.1671-2552.2008.01.001 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20080101&flag=1
[38] 李献华, 李武显, 李正祥.再论南岭燕山早期花岗岩的成因类型与构造意义[J].科学通报, 2007, 52(9):981-991. doi: 10.3321/j.issn:0023-074X.2007.09.001
[39] Chappell B W, White A Jr. Two constrasting granitetypes[J]. Pacific Geol., 1974. 8:173-174.
[40] 陶继华, 李武显, 李献华, 等.赣南龙源坝地区燕山期高分异花岗岩年代学、地球化学及锆石Hf-O同位素研究[J].中国科学:地球科学, 2013, 43(5):770-788. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201305006
[41] Collins W J, Beams S D, White A J R, et al. Nature and origin of A-type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy & Petrology, 1982, 80(2):189-200. http://d.old.wanfangdata.com.cn/NSTLQK/10.1007-BF00374895/
[42] 吴福元, 李献华, 杨进辉, 等.花岗岩成因研究的若干问题[J].岩石学报, 2007, 23(6):1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001
[43] 徐克勤, 胡受奚, 孙明志, 等.论花岗岩的成因系列——以华南中生代花岗岩为例[J].地质学报, 1983, (2):3-14. http://www.cnki.com.cn/Article/CJFDTotal-DZXE198302000.htm
[44] Wu F Y, Jahn B M, Wilde S A, et al. Highly fractionated I-type granites in NE China (Ⅰ):geochronology and petrogenesis[J]. Lithos, 2003, 66(3/4):241-273. https://www.onacademic.com/detail/journal_1000035101746610_f4fa.html
[45] Taylor S R, McLennan S M. The Continental Crust:Its Compositon and Evolution[M]. Oxford:Blackwell Scientific, 1985, 94(4):1-312.
[46] Green T H. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system[J]. Chemical Geology, 1995, 120(3/4):347-359. http://www.sciencedirect.com/science/article/pii/000925419400145X
[47] Bea F, Arzamastsev A, Montero P, L Arzamastseva. Anomalous alkaline rocks of Soustov, Kola:evidence of mantle-derived metasomatic fluids affecting crustal materials[J]. Contributions to Mineralogy & Petrology, 2001, 140(5):554-566.
[48] Rudnick R L, Gao S. Composition of the Continental Crust[J]. Treatise Geochem, 2003, 3:1-64. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-0016-7037(95)00038-2/
[49] Pearce J A, Harris N B W, Tindle A G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J]. Journal of Petrology, 1984, 25(4):956-983. doi: 10.1093/petrology/25.4.956
[50] Brown G C. Calc-alkaline intrusive rocks: their diversity, evolution and relation to volcanic arcs[C]//Andesites Orogenic Andesites and Related Rocks. New York: John Wiley and Sons, 1982, 1437-4641.
[51] Roberts M P, Clemens J D. Origin of high-potassium, talcalkaline, I-type granitoids[J]. Geology, 1993, 21(9):825-828. doi: 10.1130/0091-7613(1993)021<0825:OOHPTA>2.3.CO;2
[52] Fritzell E H, Bull A L, Shephard G E. Closure of the MongolOkhotsk Ocean:insights from seismic tomography and numerical modeling[J]. Earth and Planetary Science Letters, 2016, 445:1-12. doi: 10.1016/j.epsl.2016.03.042
[53] 刘勃然, 李伟, 张守志, 等.大兴安岭北段伸展构造[J].吉林大学学报(地球科学报), 2016, 46(5):1440-1448. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201605015
[54] 环文林, 时振梁, 鄢家全.中国东部及邻区中新生代构造演化与太平洋板块运动[J].地质科学, 1982, (2):179-190. http://www.cnki.com.cn/article/cjfd1982-dzkx198202007.htm
-