基于短波红外技术的西藏多龙矿集区铁格隆南矿床荣那矿段及其外围蚀变填图-勘查模型构建

郭娜, 史维鑫, 黄一入, 郑龙, 唐楠, 王成, 伏媛. 基于短波红外技术的西藏多龙矿集区铁格隆南矿床荣那矿段及其外围蚀变填图-勘查模型构建[J]. 地质通报, 2018, 37(2-3): 446-457.
引用本文: 郭娜, 史维鑫, 黄一入, 郑龙, 唐楠, 王成, 伏媛. 基于短波红外技术的西藏多龙矿集区铁格隆南矿床荣那矿段及其外围蚀变填图-勘查模型构建[J]. 地质通报, 2018, 37(2-3): 446-457.
GUO Na, SHI Weixin, HUANG Yiru, ZHENG Long, TANG Nan, WANG Cheng, FU Yuan. Alteration mapping and prospecting model construction in the Tiegelongnan ore deposit of the Duolong ore concentration area, northern Tibet, based on shortwave infrared technique[J]. Geological Bulletin of China, 2018, 37(2-3): 446-457.
Citation: GUO Na, SHI Weixin, HUANG Yiru, ZHENG Long, TANG Nan, WANG Cheng, FU Yuan. Alteration mapping and prospecting model construction in the Tiegelongnan ore deposit of the Duolong ore concentration area, northern Tibet, based on shortwave infrared technique[J]. Geological Bulletin of China, 2018, 37(2-3): 446-457.

基于短波红外技术的西藏多龙矿集区铁格隆南矿床荣那矿段及其外围蚀变填图-勘查模型构建

  • 基金项目:
    国土资源部公益性行业科研专项《西藏多龙整装勘查区高光谱勘查模型示范及矿田构造研究》(编号:201511017-4)和国家自然科学基金项目《斑岩铜矿高光谱短波红外勘查模型构建研究》(批准号:41302265)
详细信息
    作者简介: 郭娜(1979-), 女, 博士后, 副教授, 从事高光谱短波红外-热红外遥感地质勘查研究。E-mail:cdut_guona@126.com
    通讯作者: 史维鑫(1984-), 女, 工程师, 从事实物地质资料扫描数字化技术方法研究。E-mail:shiweixincugb@163.com
  • 中图分类号: P628

Alteration mapping and prospecting model construction in the Tiegelongnan ore deposit of the Duolong ore concentration area, northern Tibet, based on shortwave infrared technique

More Information
  • 采用短波红外技术测量西藏多龙矿集区铁格隆南矿区地表岩石样本,发现蚀变矿物主要有绢云母和绿泥石,并在地表形成了一套从绢英岩化带-青磐岩化带的具有斑岩特点的蚀变矿物组合特征。通过测量地下ZK0804,ZK1604,ZK2404,ZK3204四个钻孔岩心的短波红外特征,发现钻孔岩心中存在大量明矾石、高岭石、地开石和绢云母,在东西向展布的过程中,绢云母数量及厚度明显增大,有继续向下延伸的趋势,说明矿体向深部逐渐从富含明矾石、地开石、高岭石的高硫、低温类型的矿物组合向绢英岩化带转变,并构成了规律的蚀变分带系统。根据地表、地下岩(矿)石的短波红外光谱特征及蚀变矿物分布趋势,构建了基于短波红外勘查技术的多龙矿集区斑岩-高硫浅成低温热液型铜(金)矿床找矿勘查模型,总结了从钾化带-绢英岩化带-泥化带-高级泥化带(明矾石-地开石-高岭石组合)-青磐岩化带的一套完整蚀变矿物组合及光谱特征。

  • 加载中
  • 图 1  研究区地质图

    Figure 1. 

    图 图版Ⅰ   

    Figure 图版Ⅰ. 

    图 2  绢(白)云母波长-吸收深度随钻孔深度变化

    Figure 2. 

    图 3  地开石(a)和明矾石(b)光谱曲线

    Figure 3. 

    图 4  不同钻孔中高岭石结晶变化散点图

    Figure 4. 

    图 5  岩石样品中蚀变矿物分布比例

    Figure 5. 

    图 6  不同岩石样品蚀变矿物特征曲线(a安山岩;b砂岩)

    Figure 6. 

    图 7  地表蚀变矿物分布

    Figure 7. 

    图 8  研究区地表岩石样品K-Na含量关系

    Figure 8. 

    图 9  地表岩石Al-K-Ca-Si-Fe-As元素三角关系

    Figure 9. 

    图 10  钻孔中蚀变矿物种类识别及分布

    Figure 10. 

    图 11  蚀变矿物组合与岩性特征对比分布

    Figure 11. 

    图 12  多龙矿集区斑岩-高硫型浅成低温热液型矿床短波红外找矿勘查模型

    Figure 12. 

  • [1]

    Hedenquist J W. Exploration for epithermal gold deposits[J]. Reviews in Economic Geology, 2000, 13:245-278. http://www.mendeley.com/catalog/exploration-epithermal-gold-deposits/

    [2]

    Corbett G. Epithermal gold for explorationists[J]. AIG Journal, 2002, 1:1-26. http://www.mendeley.com/catalog/epithermal-gold-explorationists/

    [3]

    Simmons S F, White N C, John D A. Geological characteristics of epithermal precious and base metal deposits[J]. Economic Geology, 2005:485-522. https://www.mendeley.com/research-papers/geological-characteristics-epithermal-precious-base-metal-deposits/

    [4]

    Heald P, Foley N A, Hayba D O. Comparative anatomy of volcanic-hosted epithermal deposits:acid-sulfate and adularia-sericitetypes[J]. Economic Geology, 1987, 82:1-26. doi: 10.2113/gsecongeo.82.1.1

    [5]

    Einaudi M T, Hedenquist J W, Inan E E. Sulfidation state of fluids in active and extinct hydrothermal systems:transitions from porphyry to epithermal environments[J]. Society of Economic Geologists and Geochemical Society, Special Publication 2003, 10:1-50. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.461.6666

    [6]

    Lang J R, Eastoe C J. Relationship between a porphyry Cu-Mo deposit, base and precious metal veins, and Laramide intrusions, Mineral Park, Arizona[J]. Economic Geology, 1988, 83:551-567. doi: 10.2113/gsecongeo.83.3.551

    [7]

    唐菊兴, 孙兴国, 丁帅, 等.西藏多龙矿集区发现浅成低温热液型铜(金银)矿床[J].地球学报, 2014, 35(1):6-10. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dqxb201401002&dbname=CJFD&dbcode=CJFQ

    [8]

    唐菊兴, 王勤, 杨超, 等.青藏高原两个斑岩-浅成低温热液矿床成矿亚系列及其缺位找矿之实践[J].矿床地质, 2014, 33(6):1151-1170. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kcdz201406002&dbname=CJFD&dbcode=CJFQ

    [9]

    唐菊兴, 丁帅, 孟展, 等.西藏林子宗群火山岩中首次发现低硫化型浅成低温热液型矿床——以斯弄多银多金属矿为例[J].地球学报, 2016, 37(4):461-470. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dqxb201604010&dbname=CJFD&dbcode=CJFQ

    [10]

    Lin B, Tang J X, Chen Y C, et al. Geochronology and genesis of the Tiegelongnan porphyry-epithermal Cu(Au) deposit in Tibet:evidence from U-Pb, Re-Os dating and Hf, S, H-O isotopes[J]. Resource Geology, 2016, 67:1-21. https://www.deepdyve.com/lp/wiley/geochronology-and-genesis-of-the-tiegelongnan-porphyry-cu-au-deposit-bSdBGCfYPv

    [11]

    Cooke D R, Baker M, Hollings P, et al. New advances in detecting the distal geochemical footprints of porphyry systems-epidote mineral chemistry as a tool for vectoring and fertility assessments[J]. Society of Economic Geologists, Special Publication, 2014, 18:127-152. https://core.ac.uk/display/32273058

    [12]

    Abrams M J, Brown D, Lepley L, et al. Remote sensing for porphyry copper deposits in southern Arizona[J]. Economic Geology, 1983, 78:591-604. doi: 10.2113/gsecongeo.78.4.591

    [13]

    Vanvoorhis G D, Nelson P H, Drake T L. Complex resistivity spectra of porphyry copper mineralization[J].Geophysics, 1973, 38(1):49-60. doi: 10.1190/1.1440333

    [14]

    Einaudi M T, Hedenquist J W, Inan E E. Sulfidation state of fluids in active and extinct hydrothermal systems:transitions from porphyry to epithermal environments[J]. Society of Economic Geologist, Special Publication, 2003, 10:285-313. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.461.6666

    [15]

    Hurtig N C, Williams-Jones A E. Porphyry-epithermal Au-AgMo ore formation by vapor-like fluids:new insights from geochemical modeling[J]. Geology, 2015, 43(7):587-590. doi: 10.1130/G36685.1

    [16]

    Maydagán L, Franchini M, Rusk B, et al. Christopher Mcfarlane, Agnes Impiccini, Francisco Javier Ríos, Roger Rey. Porphyry to epithermal transition in the altar Cu-(Au-Mo) deposit, Argentina, studied by cathodoluminescence, LA-ICP-MS, and fluid inclusion analysis[J]. Economic Geology, 2015, 110:889-923. doi: 10.2113/econgeo.110.4.889

    [17]

    Voudouris P C, Melfos V, Spry P G, et al. The pagoniRachi/kirkiCu-Mo±Re±Au deposit, Northern Greece:mineralogical and fluid inclusion constraints on the evolution of a telescoped porphyryepithermal system[J]. The Canadian Mineralogist, 2013, 51:253-284. doi: 10.3749/canmin.51.2.253

    [18]

    Zukowski W, Cooke D R, Deyell C L, et al. Genesis and exploration implications of epithermal gold mineralization and porphyrystyle alteration at the endeavor 41 prospect, Cowal District, New South Wales, Australia[J]. Economic Geology, 2014, 109:1079-1115. doi: 10.2113/econgeo.109.4.1079

    [19]

    连长云, 章革, 元春华.短波红外光谱矿物测量技术在普朗斑岩铜矿区热液蚀变矿物填图中的应用[J].矿床地质, 2005, 24(6):621-636. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kcdz200506005&dbname=CJFD&dbcode=CJFQ

    [20]

    连长云, 章革, 元春华, 等.短波红外光谱矿物测量技术在热液蚀变矿物填图中的应用——以土屋斑岩铜矿床为例[J].中国地质, 2005, 32(3):483-493. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dizi200503019&dbname=CJFD&dbcode=CJFQ

    [21]

    郭娜, 郭科, 张婷婷, 等.基于短波红外勘查技术的西藏甲玛铜多金属矿热液蚀变矿物分布模型研究[J].地球学报, 2012, 33(4):641-653. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dqxb201204031&dbname=CJFD&dbcode=CJFQ

    [22]

    Guo N, Cudahy T, Tang J X, et al. Mapping white mica alteration associated with the Jiama porphyry-skarn Cu deposit, Central Tibet using field SWIR spectrometry[J]. Ore Geology Reviews, 2017. http://dx.doi.org/10.1016/j.oregeorev.2017.07.027. doi: 10.1016/j.oregeorev.2017.07.027

    [23]

    王勤. 西藏多龙矿集区美日切错组火山岩成因与铁格隆南铜(金)矿床成矿的关系[D]. 成都理工大学硕士学位论文, 2015.http://cdmd.cnki.com.cn/Article/CDMD-10616-1015310699.htm

    [24]

    Yang K, Huntington J F, Gemmell J B, et al. Variations in composition and abundance of white mica in the hydrothermal alteration system at Hellyer, Tasmania, as revealed by infarared reflectance spectroscopy[J]. Journal of Geochemical Exploring, 2011, 108:143-156. doi: 10.1016/j.gexplo.2011.01.001

    [25]

    Scott H, Richard M T. Footprints:Hydrothermal alteration and geochemical dispersion around porphyry copper deposits[J]. SEG newsletter, 2015, (100):12-17. http://www.mendeley.com/research/footprints-hydrothermal-alteration-geochemical-dispersion-around-porphyry-copper-deposits/

    [26]

    Duke E F.Near infrared spectra of muscovite, Tschermak substitution, and metamorphic reaction progress:implications for remote sensing[J]. Geology, 1994, 4(9):621-624. http://www.mendeley.com/research/near-infrared-spectra-muscovite-tschermak-substitution-metamorphic-reaction-progress-implications-re/

    [27]

    Guo Na. 3D geological mapping in Olympic dam deposit is on basis of geochemical and NIR-TIR data[M]. Talking inside the CSIRO group. 2016.

    [28]

    John Dills, Scott Halley, Dick Tosdal, et al. The geochemical and mineralogic footprint of hydrothermal alteration at Butte, Montana[M]. GSA, Eric Cheney session. 2014.

    祁进平. 近红外光谱在紫金山矿田勘查工作中的应用. 第七届遥感及三维光谱蚀变矿物填图培训班.

    郭娜, 王成, 汪重午, 等. 西藏改则县多龙矿集区遥感地质调查报告: 成都理工大学, 2014.

  • 加载中

(13)

计量
  • 文章访问数:  821
  • PDF下载数:  8
  • 施引文献:  0
出版历程
收稿日期:  2016-10-30
修回日期:  2017-01-10
刊出日期:  2018-03-25

目录