阿尔金造山带青白口纪亚干布阳片麻岩年龄、地球化学特征及其地质意义

李琦, 曾忠诚, 陈宁, 张若愚, 赵江林, 王天毅, 易鹏飞. 阿尔金造山带青白口纪亚干布阳片麻岩年龄、地球化学特征及其地质意义[J]. 地质通报, 2018, 37(4): 642-654.
引用本文: 李琦, 曾忠诚, 陈宁, 张若愚, 赵江林, 王天毅, 易鹏飞. 阿尔金造山带青白口纪亚干布阳片麻岩年龄、地球化学特征及其地质意义[J]. 地质通报, 2018, 37(4): 642-654.
LI Qi, ZENG Zhongcheng, CHEN Ning, ZHANG Ruoyu, ZHAO Jianglin, WANG Tianyi, YI Pengfei. Zircon U-Pb ages, geochemical characteristics and geo-logical significance of Yaganbuyang gneiss in Qingbaikou period along the Altun orogenic belt[J]. Geological Bulletin of China, 2018, 37(4): 642-654.
Citation: LI Qi, ZENG Zhongcheng, CHEN Ning, ZHANG Ruoyu, ZHAO Jianglin, WANG Tianyi, YI Pengfei. Zircon U-Pb ages, geochemical characteristics and geo-logical significance of Yaganbuyang gneiss in Qingbaikou period along the Altun orogenic belt[J]. Geological Bulletin of China, 2018, 37(4): 642-654.

阿尔金造山带青白口纪亚干布阳片麻岩年龄、地球化学特征及其地质意义

  • 基金项目:
    中国地质调查局项目《新疆阿尔金地区1:5万J45E010020等六幅区域地质矿产调查》(编号:12120114081901)、《新疆西昆仑1:5万喀英迪吉勒嘎等五幅区域地质调查》(编号:1212011120533)
详细信息
    作者简介: 李琦(1986-), 男, 硕士, 工程师, 从事区域地质调查工作。E-mail:739304107@qq.com
    通讯作者: 曾忠诚(1983-), 男, 硕士, 高级工程师, 从事区域地质调查及构造地质学研究。E-mail:113191186@qq.com
  • 中图分类号: P588.34+5;P597+.3

Zircon U-Pb ages, geochemical characteristics and geo-logical significance of Yaganbuyang gneiss in Qingbaikou period along the Altun orogenic belt

More Information
  • 出露于阿中地块库木塔什萨依一带的亚干布阳片麻岩主要岩性为黑云斜长片麻岩、黑云二长片麻岩。利用LA-ICPMS方法进行锆石微区U-Pb同位素定年,得到206Pb/238U年龄加权平均值为900.2±2.9Ma,表明亚干布阳片麻岩原岩形成于新元古代早期青白口纪;地球化学结果显示,主量元素具有高SiO2、Al2O3、K2O+Na2O含量,低Na2O、MgO、CaO和TiO2含量的特征,A/CNK值介于0.95~1.22之间,属于高钾钙碱性系列的过铝质花岗岩。岩石富集Rb、Th、K等大离子亲石元素,亏损Nb、Sr、P、Hf、Ti等高场强元素;岩石轻稀土元素分馏较强而重稀土元素分馏较弱,具有明显的负Eu异常,总体呈右倾的“Ⅴ”字形稀土元素配分模式,显示典型的地壳重熔型花岗岩特征。亚干布阳片麻岩的源岩主要为地壳中沉积岩类的部分熔融,形成于俯冲-同碰撞构造环境。综上说明亚干布阳片麻岩是新元古代早期俯冲碰撞热事件的产物,反映阿中地块和柴达木地块青白口纪处于汇聚碰撞阶段,构造岩浆活动强烈,与Rodinia超大陆汇聚事件具有一致性。

  • 加载中
  • 图 1  阿尔金造山带地质构造图(a)及研究区地质简图(b)(据参考文献修改)

    Figure 1. 

    图 图版Ⅰ   

    Figure 图版Ⅰ. 

    图 2  亚干布阳片麻岩中典型锆石阴极发光(CL)图像和年龄值

    Figure 2. 

    图 3  亚干布阳片麻岩LA-ICP-MS锆石U-Pb年龄谐和图

    Figure 3. 

    图 4  Si-((al+fm)-(c+alk))图解(底图据参考文献[18])

    Figure 4. 

    图 5  SiO2-TiO2图解(底图据参考文献[18])

    Figure 5. 

    图 6  R1-R2图解(底图据参考文献[19])

    Figure 6. 

    图 7  A/CNK-A/NK图解(底图据参考文献[20])

    Figure 7. 

    图 8  SiO2-K2O图解(底图据参考文献[21])

    Figure 8. 

    图 9  SiO2-Ce图解

    Figure 9. 

    图 10  球粒陨石标准化稀土元素配分图(底图据参考文献[22])

    Figure 10. 

    图 11  原始地幔标准化微量元素蛛网图(底图据参考文献[22])

    Figure 11. 

    图 12  C/MF-A/MF成因图解(底图据参考文献[25])

    Figure 12. 

    图 13  岩石R1-R2构造环境判别图解(底图据参考文献[26])

    Figure 13. 

    图 14  构造环境判别图解(底图全部据参考文献[28])

    Figure 14. 

    表 1  亚干布阳片麻岩(样品PM003-11) LA-ICP-MS锆石U-Th-Pb同位素分析结果

    Table 1.  LA-ICP-MS zircon U-Th-Pb isotopic analyses of Yaganbuyang gneiss(sample PM003-11)

    点号 Th/
    U
    同位素比值 年龄/Ma
    207Pb/
    206Pb
    207Pb/
    235U
    206Pb/
    238U
    208Pb/
    232Th
    207Pb/
    206U
    207Pb/
    235U
    206Pb/
    238Th
    208Pb/
    232Th
    01 0.37 0.07287 0.0017 1.502 0.01881 0.1496 0.00137 0.04434 0.00047 1010 46 931 8 899 8 877 9
    02 0.48 0.07402 0.00164 1.5351 0.01579 0.1505 0.00133 0.04529 0.00039 1042 44 945 6 904 7 895 8
    03 0.23 0.0755 0.00182 1.56755 0.02218 0.15066 0.00142 0.04619 0.00066 1082 48 958 9 905 8 913 13
    04 0.61 0.07716 0.00178 1.58381 0.01937 0.14894 0.00136 0.04588 0.00044 1125 45 964 8 895 8 907 8
    05 0.43 0.07338 0.00164 1.50659 0.01674 0.14896 0.00134 0.04456 0.00041 1025 45 933 7 895 8 881 8
    06 0.31 0.07498 0.00166 1.55528 0.01668 0.1505 0.00134 0.04863 0.00045 1068 44 953 7 904 8 960 9
    07 0.36 0.07397 0.00163 1.53618 0.0164 0.15065 0.00135 0.0453 0.00042 1041 44 945 7 905 8 896 8
    08 0.33 0.07279 0.00273 1.4987 0.04774 0.14935 0.00199 0.04425 0.00129 1008 74 930 19 897 11 875 25
    09 0.41 0.07103 0.00165 1.46069 0.01921 0.14915 0.00139 0.04153 0.00046 958 47 914 8 896 8 822 9
    10 0.34 0.07048 0.00294 1.05167 0.03843 0.10822 0.00152 0.04075 0.00133 942 83 730 19 662 9 807 26
    11 0.31 0.07293 0.00159 1.51547 0.01582 0.1507 0.00135 0.04552 0.00042 1012 43 937 6 905 8 900 8
    12 0.32 0.07529 0.00163 1.55132 0.01625 0.14942 0.00134 0.04821 0.00044 1076 43 951 6 898 8 952 9
    13 0.41 0.07345 0.00157 1.52527 0.01556 0.15057 0.00135 0.04583 0.0004 1026 43 941 6 904 8 906 8
    14 0.35 0.07087 0.00189 1.47007 0.02761 0.1504 0.00155 0.04464 0.00071 954 54 918 11 903 9 883 14
    15 0.37 0.07156 0.00153 1.48314 0.01535 0.15027 0.00135 0.0452 0.00041 973 43 924 6 903 8 894 8
    16 0.47 0.07736 0.00167 1.60998 0.01725 0.15088 0.00136 0.04908 0.00044 1131 42 974 7 906 8 968 9
    17 0.30 0.07127 0.00158 1.4785 0.0177 0.15039 0.00138 0.04589 0.0005 965 45 922 7 903 8 907 10
    18 0.34 0.06996 0.00149 1.44591 0.01501 0.14983 0.00135 0.04451 0.00041 927 43 908 6 900 8 880 8
    19 0.01 0.06056 0.00418 0.53554 0.03495 0.0641 0.00121 0.37075 0.04918 624 142 436 23 401 7 6374 725
    20 0.38 0.07105 0.00153 1.46619 0.01627 0.14959 0.00136 0.04507 0.00044 959 43 917 7 899 8 891 8
    21 0.34 0.07168 0.0015 1.4754 0.0149 0.14922 0.00134 0.04684 0.00042 977 42 920 6 897 8 925 8
    22 0.01 0.0571 0.00639 0.50629 0.05498 0.06427 0.00179 0.2096 0.04759 495 230 416 37 402 11 3846 795
    23 0.60 0.07831 0.00168 1.60843 0.01792 0.14889 0.00136 0.04978 0.00047 1155 42 974 7 895 8 982 9
    24 0.36 0.08287 0.00173 1.71677 0.01731 0.15017 0.00136 0.06023 0.00054 1266 40 1015 6 902 8 1182 10
    25 0.70 0.07706 0.00176 1.58798 0.02224 0.14939 0.00144 0.0439 0.00047 1123 45 966 9 898 8 868 9
    26 0.42 0.0708 0.00146 1.47026 0.0148 0.15054 0.00136 0.04402 0.00039 952 42 918 6 904 8 871 8
    27 0.43 0.06884 0.00145 1.42215 0.01552 0.14975 0.00137 0.04434 0.00042 894 43 898 7 900 8 877 8
    28 0.41 0.06886 0.00143 1.41493 0.01495 0.14897 0.00136 0.04108 0.00039 894 42 895 6 895 8 814 7
    29 0.47 0.07157 0.00147 1.46948 0.01504 0.14885 0.00135 0.04702 0.00042 974 41 918 6 895 8 929 8
    30 0.38 0.06662 0.00137 1.37652 0.01399 0.14979 0.00136 0.04493 0.00041 826 42 879 6 900 8 888 8
    下载: 导出CSV

    表 2  亚干布阳片麻岩主量、微量和稀土元素分析结果

    Table 2.  Major, trace and REE contents of the Yaganbuyang gneiss

    样品号 SiO2 TiO2 Al2O3 Fe2O3 FeO MgO MnO CaO Na2O K2O
    PM030/20-1 66.33 0.70 15.28 0.86 4.45 0.09 1.50 3.38 2.84 2.81
    PM030/21-1 67.62 0.47 14.25 1.17 2.77 0.07 1.44 2.79 3.11 4.42
    PM030/22-1 68.39 0.58 14.97 0.71 3.61 0.08 1.07 1.96 2.36 4.49
    PM030/23-1 67.72 0.59 14.62 0.74 3.80 0.07 1.13 2.24 2.28 4.70
    PM030/26-1 66.66 0.71 15.47 0.83 4.62 0.08 1.38 3.20 2.80 2.71
    样品号 P2O5 烧失量 总计 AR σ A/NK A/CNK K2O+Na2O Na2O/K2O Mg#
    PM030/20-1 0.14 0.91 99.29 1.88 1.37 1.98 1.10 5.65 1.01 33.84
    PM030/21-1 0.09 1.32 99.52 2.15 2.30 1.44 0.95 7.53 0.70 40.16
    PM030/22-1 0.15 1.10 99.47 1.77 1.85 1.71 1.22 6.85 0.53 30.99
    PM030/23-1 0.14 1.42 99.45 1.74 1.97 1.65 1.13 6.98 0.49 31.10
    PM030/26-1 0.14 0.70 99.30 1.86 1.28 2.05 1.16 5.51 1.03 31.44
    样品号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho
    PM030/20-1 57.4 116 15 56 10 1.42 8.94 1.19 6.37 1.15
    PM030/21-1 35.5 72 7.4 27.7 4.74 0.94 5.32 0.71 5 0.92
    PM030/22-1 39.4 84.7 9.35 36.6 7.26 0.96 7.44 1.02 6.73 1.18
    PM030/23-1 40.7 86.4 9.34 37 7.28 1.16 7.19 0.94 5.92 0.99
    PM030/26-1 43.2 85.1 11 41.12 7.39 1.52 6.85 0.963 5.34 1.02
    样品号 Yb Lu Y ∑REE LREE HREE LREE/
    HREE
    δEu δCe (La/Yb)N
    PM030/20-1 3.24 0.52 33.40 314.36 255.82 58.54 4.37 0.45 0.91 11.97
    PM030/21-1 3.34 0.45 30.70 198.25 148.28 49.97 2.97 0.57 1.00 7.18
    PM030/22-1 3.32 0.45 36.00 238.41 178.27 60.14 2.96 0.40 1.01 8.02
    PM030/23-1 2.61 0.34 30.40 233.59 181.88 51.71 3.52 0.48 1.01 10.54
    PM030/26-1 3.01 0.49 29.70 240.07 189.33 50.74 3.73 0.64 0.90 9.70
    样品号 Rb Ba Th U Ta Nb Sr Nd Zr Hf
    PM030/20-1 161.40 645.20 15.60 3.81 0.35 15.00 150.30 56.00 204.20 5.32
    PM030/21-1 152.10 600.60 25.90 2.16 0.79 11.50 193.40 27.70 151.50 2.61
    PM030/22-1 236.60 434.00 21.40 3.12 2.60 15.70 90.80 36.60 182.70 2.40
    PM030/23-1 174.20 672.10 24.80 2.52 1.33 18.40 136.10 37.00 175.60 1.33
    PM030/26-1 153.00 595.00 14.90 3.22 0.33 14.80 153.00 41.12 195.00 5.30
    注:样品PM030/20-1、PM030/21-1、PM030/26-1为黑云斜长片麻岩;PM030/22-1、PM030/23-1为黑云二长片麻岩;主量元素含量单位为%,微量和稀土元素含量为10-6
    下载: 导出CSV
  • [1]

    许志琴, 杨经绥, 张建新, 等.阿尔金断裂两侧构造单元的对比及岩石圈剪切机制[J].地质学报, 1999, 73(3): 193-205. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzxe199903000&dbname=CJFD&dbcode=CJFQ

    [2]

    刘良, 车自成.阿尔金高压变质岩带的特征及其构造意义[J].岩石学报, 1999, 15(1): 57-64. http://industry.wanfangdata.com.cn/jt/Detail/Periodical?id=Periodical_ysxb98199901006

    [3]

    校培喜, 高晓峰, 胡云绪, 等.西昆仑-阿尔金成矿带基础地质综合研究报告[M].北京:地质出版社, 2014: 54-55.

    [4]

    郭进京, 赵风清, 李怀坤.中祁连东段晋宁期碰撞型花岗岩及其地质意义[J].地球学报, 1999, 20(1): 10-15. http://www.cqvip.com/Main/Detail.aspx?id=3433858

    [5]

    梅华林, 李惠民, 陆松年, 等.甘肃柳园地区花岗质岩石时代及成因[J].岩石矿物学杂志, 1999, 18(1): 14-17. http://www.cqvip.com/QK/94932X/1999001/3505165.html

    [6]

    陆松年.青藏高原北部前寒武纪地质初探[M].北京:地质出版社, 2002.

    [7]

    Wan Y S, Zhang J X, Yang J S, et al. Geochemistry of high-grade metamorphic rocks of the North Qaidam Mountains and their geological significance[J]. Journal of Asian Earth Sciences, 2006, 28: 174-184. doi: 10.1016/j.jseaes.2005.09.018

    [8]

    董国安, 杨怀仁, 杨宏仪, 等.祁连地块前寒武纪基底锆石SHRIMP U-Pb年代学及其地质意义[J].科学通报, 2007, 52(13): 1573-1585. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200713016.htm

    [9]

    王超, 刘良, 车自成, 等.阿尔金南缘榴辉岩带中花岗片麻岩的时代及构造环境探讨[J].高校地质学报, 2006, 12(1): 74-82. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200601008

    [10]

    Lu S N, Li H K, Zhang C L, et al.Geological and geochronological evidence for the Precambrian evolution of the Tarim Craton and surrounding continental fragments[J]. Precambriam Research, 2008, 160: 94-107. doi: 10.1016/j.precamres.2007.04.025

    [11]

    崔军文, 唐哲民, 邓晋福.阿尔金断裂系[M].北京:地质出版社, 1999.

    [12]

    李琦, 曾忠诚, 陈宁, 等.阿尔金南缘新元古代盖里克片麻岩年代学、地球化学特征及其构造意义[J].现代地质, 2015, 29(6): 1271-1283. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201506002.htm

    [13]

    Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and Trace Element Determinations of Zircon by Laser Ablation- Inductively Coupled Plasma-Mass Spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28 (3): 353-370. doi: 10.1111/ggr.2004.28.issue-3

    [14]

    柳小明, 高山, 第五春荣, 等.单颗粒锆石的20μm小斑束原位微区LA-ICP-MS U-Pb年龄和微量元素的同时测定[J].科学通报, 2007, 52 (2): 228-235. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_kxtb200702017

    [15]

    吴元保, 郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 2004, 49(16): 1589 -1604. doi: 10.3321/j.issn:0023-074X.2004.16.002

    [16]

    Rutatto D. Zircon trace element geochemistry:Paritioning with garnet and the link between U-Pb ages and metamorphism[J]. Chemcal Geology, 2002, 184: 123-138. doi: 10.1016/S0009-2541(01)00355-2

    [17]

    齐秋菊, 张招崇, 董书云, 等.西南天山阿克苏地区中元古代变质岩的地球化学特征及其构造背景[J].岩石矿物学杂志, 2011, 30 (2): 172-184. http://www.oalib.com/paper/4337971

    [18]

    王仁民, 贺高品, 陈珍珍, 等.变质岩原岩图解判别法[M].北京:地质出版社, 1987.

    [19]

    De la Roche H, Leterrier J, Grande Claude P, et al. A classification of volcanic and plutonic rocks using R1-R2 diagrams and major element analyses- its relationship and current nomenclature[J]. Chem. Geol., 1980, 29: 183-210. doi: 10.1016/0009-2541(80)90020-0

    [20]

    Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    [21]

    Rickwood P C. Boundary lines within petrologic diagrams which useoxides of major and minor elements[J]. Lithos, 1989, 22(4): 247-263. doi: 10.1016/0024-4937(89)90028-5

    [22]

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]// Saunders A D, Norry M J. Magmatism in the OceanBasins. Geological Society, London, Special Publications, 1989, 42(1): 313-345.

    [23]

    Rapp R P, Watson E B. Dehydration melting of metabasalt at 8- 32Kbar:implication for continental growth and crust-mantle recycling[J]. Journal of Petrology, 1995, 36: 891-931. doi: 10.1093/petrology/36.4.891

    [24]

    Rudnick R L, Gao S. Composition of the continental crust[J]. Treatise on Geochemistry, 2003, 3: 1-64. http://minersoc.org/pages/Archive-MM/Volume_58A/58A-2-959.pdf

    [25]

    Alther R, Holl A, Hegner E, et al. Highpotassium, calc-alkaline Ⅰ- type plutonism in the European Variscides:Northern Vosges (France) and northern Schwarzwald (Germany)[J]. Lithos, 2000, 50 (1/3): 51-73. http://www.sciencedirect.com/science/article/pii/S0024493799000523

    [26]

    Batchelor R A, Bowden P. Petrogenietic interpretation ofgranitiod rock series using multicationic paramelters[J]., Chem.Geol., 1985, 48(1/4): 43-55.

    [27]

    Pitcher W S. The nature and origin of granite[M]. Springer Science & Business Media., 1997.

    [28]

    Pearce J A, Harris N B W, Andrew G T.Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4): 959-983. https://academic.oup.com/petrology/article/25/4/956/1386972

    [29]

    王立社, 张巍, 段星星, 等.阿尔金环形山花岗片麻岩同位素年龄及成因研究[J].岩石学报, 2015, 31(1): 119-132. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20150109&journal_id=ysxb&year_id=2015

    [30]

    陆松年, 李怀坤, 陈志宏, 等.新元古时期中国古大陆与罗迪尼亚超大陆的关系[J].地学前缘, 2004, 11(2): 515-24. https://www.wenkuxiazai.com/doc/d8c90162cc7931b764ce1526-2.html

    [31]

    陆松年, 王惠初, 李怀坤, 等.柴达木盆地北缘"达肯大坂群"的再厘定[J].地质通报, 2002, 21(1): 19-23. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=20020106&flag=1

    [32]

    王惠初, 袁桂邦, 辛后田, 等.柴达木盆地北缘鱼卡河岩群的地质特征和时代[J].地质通报, 2004, 23(4): 314-321. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=20040463&flag=1

    [33]

    张建新, 万渝生, 孟繁聪, 等.柴北缘夹榴辉岩的片麻岩(片岩)地球化学、Sm-Nd和U-Pb同位素研究——深俯冲的前寒武纪变质基底?[J].岩石学报, 2003, 19(3): 43-51. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200303008

    [34]

    林慈銮, 孙勇, 陈丹玲, 等.柴北缘鱼卡河花岗质片麻岩的地球化学特征和锆石LA-ICPMS定年[J].地球化学, 2006, 35(5): 489-505. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dqhx200605004&dbname=CJFD&dbcode=CJFQ

    [35]

    万渝生, 许志琴, 杨经绥, 等.祁连造山带及邻区前寒武纪深变质基底的时代和组成[J].地球学报, 2003, 24(4): 319-324. http://www.oalib.com/paper/4876805

    [36]

    郭进京, 赵风清, 李怀坤, 等.中祁连东段晋宁期碰撞型花岗岩及其地质意义[J].地球学报, 1999, 20(1): 10-15. http://www.cqvip.com/Main/Detail.aspx?id=3433858

    [37]

    董国安, 杨怀仁, 杨宏仪, 等.祁连地块前寒武纪基底锆石SHRIMP U-Pb年代学及其地质意义[J].科学通报, 2007, 52 (13): 1572-1585. doi: 10.3321/j.issn:0023-074X.2007.13.015

    [38]

    王涛, 张宗清, 王晓霞, 等.秦岭造山带核部新元古代碰撞变形及其时代——强变形同碰撞花岗岩与弱变形脉体锆石SHRIMP年龄限定[J].地质学报, 2005, 79(2): 220-231. http://www.cqvip.com/QK/95080X/2005002/15499485.html

    [39]

    陆松年, 陈志宏, 李怀坤, 郝国杰, 周红英, 相振群.秦岭造山带中-新元古代(早期)地质演化[J].地质通报, 2004, 23(2): 107-112. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=20040219&flag=1

    [40]

    裴先治, 丁仨平, 张国伟, 等.西秦岭北缘新元古代花岗质片麻岩的LA-ICP-MS锆石U-Pb年龄及其地质意义[J].地质学报, 2007, 81(6): 773-784. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200706005

    西安地质矿产研究所. 新疆1: 25万苏吾什杰幅区域地质调查报告. 2003.

    中国地质调查局西安地质调查中心. 新疆1: 5万阿尔金山清水泉地区四幅区调查成果报告. 2010.

  • 加载中

(15)

(2)

计量
  • 文章访问数:  562
  • PDF下载数:  7
  • 施引文献:  0
出版历程
收稿日期:  2017-05-20
修回日期:  2017-06-07
刊出日期:  2018-04-25

目录